

2009 MCAS Technical Report

This document was prepared by the Massachusetts Department of Elementary and Secondary Education Mitchell D. Chester, Ed.D. Commissioner

The Massachusetts Department of Elementary and Secondary Education, an affirmative action employer, is committed to ensuring that all of its programs and facilities are accessible to all members of the public. We do not discriminate on the basis of age, color, disability, national origin, race, religion, sex, or sexual orientation. Inquiries regarding the Department's compliance with Title IX and other civil rights laws may be directed to the Human Resources Director, 75 Pleasant St., Malden, MA 02148 781-338-6105.

© 2010 Massachusetts Department of Elementary and Secondary Education

Permission is hereby granted to copy any or all parts of this document for non-commercial educational purposes.

Please credit the "Massachusetts Department of Elementary and Secondary Education."

Massachusetts Department of Elementary and Secondary Education 75 Pleasant Street, Malden, MA 02148-4906
Phone 781-338-3000 TTY: N.E.T. Relay 800-439-2370
www.doe.mass.edu

TABLE OF CONTENTS

CHAPTER 1. PURPOSE OF THIS REPORT AND OVERVIEW OF CHANGES IN 2009	
1.1 Overview of Program Changes Introduced in 2009	
1.1.1 Additional and Suspended Administrations	2
1.1.2 Competency Determination	
1.1.3 MCAS Test Participation Requirements	
1.1.4 Scorer Training Modifications	
CHAPTER 2. TEST DEVELOPMENT AND DESIGN	
2.1 Standard MCAS Test Development and Design	
2.1.1 Changes in 2009 Test Specifications	4
2.1.1.1 Science and Technology/Engineering	
2.1.1.2 Other Changes in 2009 Test Specifications	
2.2 MCAS Alternate Assessment (MCAS-Alt) Test Development and Design	
CHAPTER 3. TEST ADMINISTRATION AND PARTICIPATION	
3.1 2009 MCAS Test Administration Participation	
3.2 Test Administration Policies and Student Participation Requirements	<i>6</i>
CHAPTER 4. SCORING PROCEDURES AND METHODOLOGY	8
4.1 Scoring of Standard Test Items	8
4.1.1 Scoring Specifications.	
4.1.2 Interrater Consistency Tables	
4.1.3 2009 Scoring Locations	
4.2 Scoring of MCAS-Alt Portfolios	10
4.2.1 Interrater Consistency Tables	
4.2.2 Change to Rubric	
4.2.3 Competency Determinations	11
4.2.4 Composition of the Project Leadership Team	11
4.2.5 Training Materials Selection	
4.2.6 Applications to Score MCAS-Alt Portfolios	
4.3 MCAS Equating and Scaling Procedures	
4.3.1 Equating	
4.3.1.1 Equating Methods	
4.3.1.2 Rescore Analyses 4.3.2 Scaling	
CHAPTER 5. REPORTING OF RESULTS	
5.1 Standard Setting	
5.2 Standard MCAS Test Results	
5.2.1 Performance Level Results	
5.3 MCAS-Alt Results	
5.3.1 Performance Level Results	
5.3.2 Scoring Dimension Results	
5.3.2.2 Demonstration of Skills and Concepts	
5.3.2.3 Independence	
5.3.2.4 Self-Evaluation	
5.3.2.5 Generalized Performance	
5.3.3 MCAS-Alt Participation Data	
5.4 Reports of Test Results	
CHAPTER 6. STATISTICAL AND PSYCHOMETRIC SUMMARIES	
6.1 Item Difficulty and Discrimination	55
6.1.1 Summary of Item Analysis Results	
6.1.2 Differential Item Functioning (DIF)	
6.1.2.1 How DIF Statistics Are Used	
6.1.2.2 DIF Analysis by Test Form and Item Type	
6.1.2.4 DIF Categorization by Gender and Item Type	

6.2 Item	Response Theory (IRT) Analyses	71
6.3 Test 1	Reliability	135
	iability and Standard Errors of Measurement	
	atified Coefficient Alpha (a)	
	iability of Performance Level Categorization	
6.4 Valid	ity	144
	idity Evidence for Standard MCAS Tests	
6.4.1.1	Test Content	145
6.4.1.2	Internal Structure	
6.4.1.3	Dimensionality Analyses	
6.4.1.4	Consequences of Testing	
6.4.2 Vai	idity Evidence for the MCAS-Alt	
6.4.2.2	Content Validity Procedural Validity	
REFERENCES		
APPENDICES		158
APPENDIX A.	COMPARISON OF COMMON AND EQUATING ITEM SETS	
APPENDIX B.	SCORING REPORTS: SAMPLE 2009 COMPILATION REPORT	
APPENDIX C.	INTERRATER CONSISTENCY TABLES	
APPENDIX D.	IRT ITEM PARAMETERS	
APPENDIX E.	DELTA AND RESCORE ANALYSES TABLES	
APPENDIX F.	2009 ASSESSMENT DEVELOPMENT COMMITTEE MEMBERS AND 20	009 BIAS AND
	SENSITIVITY REVIEW COMMITTEE MEMBERS	

Chapter 1. Purpose of This Report and Overview of Changes in 2009

The Massachusetts Comprehensive Assessment System (MCAS) is the Commonwealth's program for student assessment developed in accordance with the Education Reform Act of 1993. The main purposes of MCAS are to

- measure student, school, and district performance in meeting the state's learning standards as detailed in the Massachusetts curriculum frameworks;
- improve student achievement and classroom instruction by providing diagnostic feedback regarding the acquisition of skills and knowledge;
- help determine English language arts, mathematics, and science and technology/engineering competency at the grade 10 level for the awarding of high school diplomas.

The purpose of this 2009 MCAS Technical Report is to document the technical quality and characteristics of the 2009 MCAS operational tests, and to present evidence of the validity and reliability of those tests' results. This 2009 Report frequently references the 2007 and 2008 MCAS Technical Reports for documentation of those elements of the MCAS program that did not change from 2008 to 2009. For all characteristics of the MCAS program that were modified in 2009, complete technical data and details are provided in this 2009 Report. The 2007 and 2008 MCAS Technical Reports are provided on the Department of Elementary and Secondary Education (ESE or "the Department") website at www.doe.mass.edu/mcas/tech/?section=techreports.

This 2009 Report provides detailed information regarding test design and development, scoring, and analysis and reporting of 2009 MCAS results at the student, school, district, and state levels. This detailed information includes but is not limited to the following:

- Test administration
- Equating and scaling of tests
- Statistical and psychometric summaries
 - Item analyses
 - Reliability evidence
 - Validity evidence

In addition, the technical appendices contain detailed item-level and summary statistics related to each 2009 MCAS test and its results.

As mentioned above, the 2009 MCAS Technical Report is designed to supplement the technical reports issued for previous MCAS administrations by providing information specific to the 2009 MCAS test administration. Previous technical reports, as well as other documents referenced in this report, provide additional background information about the MCAS program and its development and administration. Technical reports for 1998 to 2008 are available online at www.doe.mass.edu/mcas/tech/?section=techreports.

This report is primarily intended for experts in psychometrics and educational measurement. It assumes a working knowledge of measurement concepts such as reliability and validity and statistical concepts of correlation and central tendency. For some chapters, the reader is presumed to

have basic familiarity with advanced topics in measurement and statistics, such as item response theory (IRT) and factor analysis.

1.1 Overview of Program Changes Introduced in 2009

In addition to changes detailed throughout this document, the following changes were made for the 2009 MCAS administration.

1.1.1 Additional and Suspended Administrations

As of February 2009, an additional high school end-of-course science and technology/engineering testing opportunity is now offered in biology.

As of 2009, the grades 5 and 7 history and social science pilot tests and the high school (grades 10–11) U.S. history pilot test are being suspended for two years.

1.1.2 Competency Determination

Beginning with the class of 2010, to receive the Competency Determination required for high school graduation, students must

either

• earn a scaled score of at least 240 on both the grade 10 MCAS English language arts (ELA) and mathematics tests or retests

or

• earn a scaled score between 220 and 238 on both tests or retests *and* fulfill the requirements of an educational proficiency plan (EPP) (more information about EPP requirements can be found at www.doe.mass.edu/hsreform/epp)

AND

- earn a scaled score of at least 220 on one of the following high school MCAS science and technology/engineering (STE) tests:
 - Biology (administered in February and June)
 - Chemistry (administered in June)
 - Introductory physics (administered in June)
 - Technology/engineering (administered in June)

Students must also meet all local graduation requirements.

Students in the class of 2009 were required to earn a scaled score of 220 or higher on both the MCAS English language arts and mathematics tests or retests to earn a Competency Determination.

1.1.3 MCAS Test Participation Requirements

Student participation requirements for all grades and content areas in the spring 2009 MCAS tests can be found in the *Spring 2009 Principal's Administration Manual*.

Student participation requirements for the November 2008 retests in ELA and mathematics, February 2009 biology test, and March 2009 retests in ELA and mathematics can be found in the *Fall 2008/Winter 2009 Principal's Administration Manual*.

For a copy of either document, please call Student Assessment Services at 781-338-3625.

1.1.4 Scorer Training Modifications

In 2009, there was a slight change in the materials approved during the benchmarking meetings for the grades 4, 7, and 10 ELA composition tests.

A new set of response exemplars, called a mixed anchor set, was added to the body of responses typically used to train ELA composition scorers (e.g., topic development anchor, conventions anchor, mixed training set, qualifying sets, decision sets, etc.). The mixed anchor set consisted of 10 responses, each with a solid and clear topic development score and a solid and clear conventions score. These responses were approved by all benchmarking meeting participants, and were referred to throughout the training/scoring process as true examples of each of the two score points. This change allowed scorers to better understand how two distinct scores from two separate scoring scales are applied to the same response.

Further details about the purpose, selection, and use of each type of student response set (anchor, training, and qualifying) are available in the 2007 MCAS Technical Report.

Chapter 2. Test Development and Design

2.1 Standard MCAS Test Development and Design

The 2009 MCAS administration included operational tests in the following grades and content areas:

- Grade 3: English language arts, mathematics
- Grade 4: English language arts (including one writing prompt), mathematics
- Grade 5: English language arts, mathematics, science and technology/engineering
- Grade 6: English language arts, mathematics
- Grade 7: English language arts (including one writing prompt), mathematics
- Grade 8: English language arts, mathematics, science and technology/engineering
- Grade 10: English language arts (including one writing prompt), mathematics
- High school (grades 9–11): end-of-course science and technology/engineering (biology, chemistry, introductory physics, technology/engineering)

Since passing the grade 10 English language arts and mathematics tests is one requirement for receiving a high school diploma, retest opportunities in those tests were offered for students in grade 10 and above who had not previously passed one or both tests. Retests in English language arts and mathematics were offered in November 2008 and March 2009. Students in the class of 2010 must also pass one science and technology/engineering test to graduate. Students may take one of the four high school STE tests starting at grade 9. If a student does not pass a specific STE test, he/she may take that content area over again or may take the STE test in the content area that he/she is currently studying. Retesting opportunities are offered during February in biology and during the high school STE June administration period.

The 2007 MCAS Technical Report provides detailed information about the development and design of the English language arts, mathematics, and STE tests, about the types and design of items on MCAS tests, and about how MCAS tests are developed and constructed. The 2008 MCAS Technical Report explains subsequent changes to the STE tests.

Appendix A provides information regarding the extent to which equating item sets for each content area and grade combination matched their corresponding common item sets in item types, number of possible score points, reporting category point distribution, difficulty, and discrimination.

Section 2.1.1.1 describes changes in test specifications for the science and technology/engineering tests from 2008 to 2009.

The curriculum frameworks for all content areas can be found at www.doe.mass.edu/frameworks.

2.1.1 Changes in 2009 Test Specifications

2.1.1.1 Science and Technology/Engineering

The high school chemistry test increased its matrix slots by eight multiple-choice (MC) items and decreased the number of forms used. No change was made to the number of open-response (OR) items. Table 2-1 shows the changes to the 2009 high school chemistry test.

Table 2-1. 2009 MCAS: Changes to High School Chemistry Test

I		Number	Comm	on Items	Matrix Items	
	Year	of Forms	MC	OR	МС	OR
I	2008	6	40	5	12	2
1	2009	5	40	5	20	2

2.1.1.2 Other Changes in 2009 Test Specifications

In 2009, in grades 3–8 the number of items released to the public was reduced from the entire common section of the test to a portion of the common section. Table 2-2 indicates the number of multiple-choice (MC), open-response (OR), writing prompt (WP), and short-answer (SA) items that were released in 2009 by grade and content area.

Table 2-2. 2009 MCAS: Number of Released Items by Grade and Content Area

				o by Claac				
Grade	English Language Arts		th Language Arts Mathematics			ce and /Engineering		
	MC	OR	WP	MC	SA	OR	MC	OR
3	12	1		12	2	2		
4	15	2	1	14	2	2		
5	15	2		13	2	2	17	2
6	16	2		13	2	2		
7	15	2	1	13	2	2		
8	15	2		13	2	2	17	2
10*	36	4	1	32	4	6	40	5

^{*}All common grade 10 English language arts and mathematics items were released.

All common high school biology and introductory physics items were released; common high school chemistry and technology/engineering items were not released.

The release of fewer common items will make it possible to shorten the test in subsequent test administrations.

2.2 MCAS Alternate Assessment (MCAS-Alt) Test Development and Design

Students with significant disabilities whose individualized education program (IEP) or 504 teams determine that they cannot participate in standard MCAS tests, even with accommodations, instead take the MCAS Alternate Assessment (MCAS-Alt). The MCAS-Alt assesses the same Massachusetts curriculum framework content areas and learning standards as the standard MCAS tests. Evidence of student performance is submitted in an MCAS-Alt portfolio.

For information about portfolio requirements, including examples of portfolio evidence and details regarding which strands are required in the content areas of English language arts, mathematics, and science and technology/engineering, please refer to the 2007 MCAS Technical Report. Information regarding Competency Portfolios at grade 10 and beyond is also found in the 2007 Report.

Chapter 3. Test Administration and Participation

3.1 2009 MCAS Test Administration Participation

The standard MCAS tests were administered during three periods in the spring of 2009:

- March–April
 - Grades 3–8 and 10 English language arts (ELA)
- May
 - Grades 3–8 and 10 mathematics
 - Grades 5 and 8 science and technology/engineering
- June
 - High school (grades 9–11) end-of-course science and technology/engineering
 - Biology
 - Chemistry
 - Introductory physics
 - Technology/engineering

The 2009 MCAS administration also included retest opportunities in English language arts and mathematics for students in grades 10 and above who had not previously passed one or both tests. Retests were offered in November 2008 and March 2009.

An additional high school (grades 9–11) end-of-course science and technology/engineering test in biology was administered in February 2009, as both a standard test and a retest.

MCAS-Alt portfolios were required to be submitted no later than April 13, 2009.

The grades 5 and 7 history and social science pilot tests and the high school (grades 10–11) U.S. history pilot test were suspended in 2009.

Table 3-1 shows the complete 2008–2009 MCAS test administration schedule.

3.2 Test Administration Policies and Student Participation Requirements

Details about test administration policies and student participation requirements, including requirements for students with disabilities and limited English proficiency, can be found in sections 3.1 and 3.2 of the 2007 MCAS Technical Report.

Table 3-1. 2008–09 MCAS: Test Administration Schedule

lest	Administration Schedule	
Test Grade and Content Area	Test Administration Date(s)	Deadline for Return of Materials to Contractor
Rete	st Administration Windows	
November 5–13, 2008		
ELA Composition Retest	November 5	
ELA Reading Comprehension Retest		
Sessions 1 and 2	November 6	
Session 3	November 7	November 18
Mathematics Retest		
Session 1	November 12	
Session 2	November 13	
March 2–6, 2009		
ELA Composition Retest	March 2	
ELA Reading Comprehension Retest		
Sessions 1 and 2	March 3	
Session 3	March 4	
Mathematics Retest		
Session 1	March 5	March 10
Session 2	March 6	
March-April	2009 Test Administration Window	N
Grades 3–8	March 30-April 14	
ELA Reading Comprehension	March 30–April 14	
Grades 4, 7, and 10	March 31	
ELA Composition	IVIAICII 3 I	
Grade 10		April 15
ELA Reading Comprehension		7,611110
Sessions 1 and 2	April 1	
Session 3	April 2	
Grades 4, 7, and 10	April 7	
ELA Composition Make-Up	·	
May 200	9 Test Administration Window	
Grades 3–8 Mathematics		
Grades 5 and 8	May 11–28	
Science and Technology/Engineering		May 29
		lividy 20
Grade 10 Mathematics		
Session 1	May 19	
Session 2	May 20	
High School (Grades 9-11) End	-of-Course Science and Technolo	gy/Engineering Test
	dministration Windows	
February 2-3, 2009		
Biology	February 2-3	February 6
June 4-5, 2009		
Biology		
Chemistry	June 4–5	June 10
Introductory Physics		
Technology/Engineering		

Chapter 4. Scoring Procedures and Methodology

4.1 Scoring of Standard Test Items

Specific information regarding how student responses are scored is provided in the 2007 MCAS Technical Report, including the following:

- The physical handling of student test booklets and student responses
- The iScore scoring software
- The scoring of constructed-response items
 - Scoring staff
 - Scorer training
 - Scoring methodology and procedures
 - Reports generated during scoring

In 2009, scoring locations varied slightly from the previous year; the 2009 sites are listed in section 4.1.3. Additionally, the format of the compilation report generated during scoring changed; a sample report is included in this document as Appendix B.

4.1.1 Scoring Specifications

Detailed information regarding scoring specifications is available in sections 4.1.2.2 through 4.1.2.7 of the 2007 MCAS Technical Report.

4.1.2 Interrater Consistency Tables

An item was either single-scored, in which each student response was scored only once, or double-blind scored, in which each student response was independently read and scored by two separate readers. The percentages of double-blind scores for each score point range, grade, and content area is shown in Table 4-1.

Table 4-1. 2009 MCAS: Percentages of Double-Blind Scores for Each Score Point Range

Grade and Content Area		Score Po	int Range	
ELA Composition	0-2	0-4	1-4	1-6
Grade 4			100%	100%
Grade 7			100%	100%
Grade 10			100%	100%
ELA Reading				
Grade 3	10%	10%		
Grade 4-8	10%	10%		
Grade 10	100%	100%		
Mathematics				
Grade 3-8	10%	10%		
Grade 10	100%	100%		
Science and Technology/Engineering				
Grade 5	10%	10%		
Grade 8	10%	10%		
Grade 9-11 (HS)	100%	100%		

Interrater consistency tables showing the percentages of agreement on double-scored 0-4, 1-4, and 1-6 point constructed-response items are provided in Appendix C.

4.1.3 2009 Scoring Locations

The iScore database, its operation, and its administrative controls are all based in Dover, New Hampshire, but the iScore system monitored all scoring activities across all of the 2009 MCAS scoring sites:

- Troy, New York
 - Grade 7 English language arts composition
 - High school (grades 9–11) biology
- Longmont, Colorado
 - Grades 4–10 English language arts reading comprehension
 - Grades 3–5 and 7–10 mathematics
 - High school (grades 9–11) introductory physics
- Dover, New Hampshire
 - Grade 3 English language arts reading comprehension
 - High school (grades 9–11) chemistry
 - High school (grades 9–11) technology/engineering
- Louisville, Kentucky
 - Grades 4 and 10 English language arts composition
 - Grade 6 mathematics
 - Grades 5 and 8 science and technology/engineering

Reader accuracy, reliability, and consistency were measured across all scoring locations in the same way, using the same standards. Telephone calls, faxes, e-mails, secure websites and iScore applications and reports were used to ensure constant communication and coordination between all scoring sites and scoring shifts. The Scoring Manager, Scoring Content Managers, and Scoring Chief Readers were able to confirm consistent reader and leadership training by live monitoring of the training sessions via iLinc, an interactive, computer based communication system.

MCAS readers at the scoring locations listed above were recruited and obtained primarily through a national contract with Kelly Services, a temporary employment agency. All MCAS readers had to successfully complete at least two years of college; readers of responses to any of the grade 10/high school responses were required to submit documentation they possessed a four-year college degree or better.

Teachers, tutors, and administrators (principals, guidance counselors, etc.) currently under contract or employed by or in Massachusetts schools, or anyone under 18 years of age, were not eligible to score MCAS responses.

MCAS readers were a diverse group of individuals with a wide range of backgrounds, ages, and experiences. Most scorers were quite experienced, having scored student responses for a number of other testing programs, and many have previously scored MCAS and MEPA-R/W responses.

Table 4-2 is a summary of reader background across all scoring shifts at all scoring locations.

Table 4-2. 2009 MCAS: Summary of Reader Background Across Scoring Shifts and Scoring Locations

Education	N	%
Less than 48 college credits	0	0.0
Associate Degree/More than 48 college credits	156	8.3
Bachelor's degree	1125	60.0
Masters Degree/Doctorate	595	31.7
Teaching Experience		
No teaching certificate or experience	936	49.9
Teaching certificate or experience	786	41.9
College Instructor	154	8.2
Scoring Experience		
No previous experience as reader	740	39.5
1-3 years experience	888	47.3
3+ years experience	248	13.2

4.2 Scoring of MCAS-Alt Portfolios

Details regarding the scoring of MCAS-Alt portfolios are provided in the 2007 and 2008 MCAS Technical Reports. The 2009 procedures generally followed those of 2008.

Following is a list of slight changes to the 2009 assessment which are further detailed in the corresponding sections of this chapter:

- Rubric for the level of complexity scoring dimension
- Number of portfolios submitted and approved for a Competency Determination
- Composition of the project leadership team (PLT)
- Number of portfolios considered during selection of training materials
- Number of applications to become MCAS-Alt portfolio scorers

4.2.1 Interrater Consistency Tables

MCAS-Alt interrater consistency tables for 2009 are provided in Appendix C.

4.2.2 Change to Rubric

The Level of Complexity rubric was modified to specify that work receiving a score point of 1 was unmatched to the curriculum framework learning standard required for assessment.

In previous years, a portfolio with evidence unmatched to the curriculum framework learning standards was not scored. For 2009, the project leadership team recommended that a Level of Complexity score of 1 be assigned, in order to differentiate an unmatched submission from a portfolio where the entire strand was missing. To reflect this new application of a score point of 1, the rubric was made more specific in that area.

Each strand was given a score in Level of Complexity ranging from 1 to 5 based on the scoring rubric shown in Table 4-3.

Table 4-3. 2009 MCAS: Rubric for Level of Complexity Score in Each Content Area

		Score Point		
1	2	3	4	5
Portfolio reflects little or no basis in, or is unmatched to, curriculum framework learning standards required for assessment.	Student primarily addresses social, motor, and communication "access skills" during instruction based on curriculum framework learning standards in this strand.	Student addresses curriculum framework learning standards that have been modified below grade level expectations (i.e., "entry points") in this strand.	Student addresses a narrow sample of curriculum framework learning standards (1 or 2) at grade level expectations in this strand.	Student addresses a broad range of curriculum framework learning standards (3 or more) at grade level expectations in this strand.

4.2.3 Competency Determinations

In 2009, a total of 16 English language arts, 26 mathematics, and 30 science and technology/engineering portfolios were submitted by students in grades 10, 11, 12 and 12+ for consideration to earn a Competency Determination. Of these submissions, 8 English language arts, 10 mathematics, and 14 STE portfolios earned the Competency Determination. Please note, Table 5-25 does not include the students in grades 12 and 12+ for STE or grades 11, 12, and 12+ for English language arts and mathematics.

4.2.4 Composition of the Project Leadership Team

In 2009, the MCAS-Alt PLT included four teacher consultants, in addition to ESE and Measured Progress staff.

4.2.5 Training Materials Selection

The PLT reviewed 170 portfolios and chose approximately 45 sample strands to consider as exemplars for scorer training. While triple scoring, PLT members demonstrated exact agreement for all five scoring dimensions on 33 samples. The 20 strands in the scorer sample set were chosen from these 33 samples.

4.2.6 Applications to Score MCAS-Alt Portfolios

In 2009, the ESE received over 425 applications to become MCAS-Alt portfolio scorers. The PLT chose 212 applicants, based on their familiarity with the assessment, to attend MCAS-Alt scorer training sessions.

4.3 MCAS Equating and Scaling Procedures

4.3.1 Equating

In addition to the information provided in this report specific to the equating of the 2009 MCAS tests, information is available in the 2007 MCAS Technical Report about the purpose of equating, chained link design, the history of MCAS equating methods, and the delta method.

The data and procedures used to equate 2009 MCAS test results include evaluations of standard errors around item parameters, as well as the test characteristic curves (TCCs) that are the basis for

MCAS equating and scaling procedures. The TCCs for the 2009 MCAS tests are provided in section 6.1.3 of this report.

4.3.1.1 Equating Methods

A raw score to theta equating procedure was used to equate the MCAS 2009 tests. For item calibration, the three-parameter logistic (3PL) model was used for dichotomous items, and the graded response model (GRM) for polytomous items. Item parameters are provided in Appendix D. Prior to parameter value fixing, the anchor items were evaluated for use as equating items via the delta method (Holland & Wainer, 1993).

For the 2009 MCAS administration, one to three test items were excluded from use in equating, based on delta analysis results, for the following tests:

- One test item removed
 - Grade 5 mathematics
 - Grade 6 English language arts
 - Grade 7 mathematics
 - Grade 8 mathematics
 - Grade 8 science and technology/engineering
 - High school (grades 9–11) introductory physics
 - High school (grades 9–11) technology/engineering
- Two test items removed
 - Grade 10 mathematics
- Three test items removed
 - Grade 10 English language arts

All operational high school tests (grade 10 English language arts, grade 10 mathematics, and grades 9–11 biology, chemistry, introductory physics, and technology/engineering) and retests were preequated; however, delta analyses were performed to examine any drift of item parameter and to remove flagged equating items.

The 2009 MCAS delta analyses tables are provided in Appendix E, Tables E-1 through E-14.

4.3.1.2 Rescore Analyses

For the 2009 MCAS tests in English language arts, mathematics, grades 5 and 8 science and technology/engineering, and high school (grades 9–11) biology, chemistry, introductory physics, and technology/engineering, a rescore analysis was conducted to evaluate potential constructed-response equating items. For each potential equating item, approximately 200 responses from the previous year's test were randomly selected and rescored during the 2009 scoring sessions. The scores for the two years were compared; any items found to have a large difference between average scores were excluded as equating items.

¹ Although the grade 10 English language arts writing prompt was new in 2009, the item response theory parameters resulting from calibrating it were inconsistent with the observed difficulty level of the item. Consequently, parameters from the prior year's prompt, which had similar classical statistics, were applied to the current year's data.

Using Cohen's (1960) effect size rule of thumb (wherein items with effect sizes greater than 0.80 are automatically removed as equating items), a handful of items whose effect sizes slightly exceeded the negligible range—i.e., beyond 0.20 (e.g., grade 5 science and technology/engineering item no. 229060)—were added to a "watch list" and were further studied in terms of content and model fit.

Results of this rescore analysis are shown in Appendix E, Tables E-15 through E-21. As indicated in the last column of each table, no items were discarded from use as equating items on the 2009 tests as a result of the watch list evaluation or due to large differences between average scores over two years.

4.3.2 Scaling

In addition to the information provided in this report specific to the scaling of 2009 MCAS tests, information is available in the 2007 MCAS Technical Report regarding the purpose of scaling, scaled score cutpoints for the four MCAS performance levels, and scaled score standard error calculation; a figure illustrating the scaling procedure is also included. Raw score to scaled score conversion tables for the 2009 MCAS administration are available at www.doe.mass.edu/mcas/results.html.

Chapter 5. Reporting of Results

5.1 Standard Setting

No standard setting was necessary for the 2009 MCAS tests. Information about past standard-setting activities is available in the 2007 MCAS Technical Report.

5.2 Standard MCAS Test Results

Results for the standard MCAS tests are reported according to four performance levels:

- Advanced (Above Proficient at grade 3)
- Proficient
- Needs Improvement
- Warning (Failing at high school)

Descriptions of these performance levels are provided in section 5.1.1.1 of the 2007 MCAS Technical Report.

5.2.1 Performance Level Results

Statewide performance level results can be found in the document *Spring 2009 MCAS Tests: Summary of State Results* (www.doe.mass.edu/mcas/2009/results/summary.pdf).

Results for each 2009 test item, including average item score and percentage of total student responses across the state, are available on the Department's website at http://profiles.doe.mass.edu/mcas/mcasitems2.aspx?grade=03&subjectcode=ELA&linkid=2&orgcode=00000000&fycode=2009&orgtypecode=0&.

Scaled Score Distributions

Figures 5-1 through 5-38 and Tables 5-1 through 5-18 show the 2009 scaled score distributions for each grade and content area combination (for grade 3, raw score distributions are shown, since no scaled scores were calculated). Analyses were conducted only on students who attempted all sessions and who were not coded as "not tested." No scaled scores were calculated for the test results of first-year limited English proficient (LEP) students in any grade.²

In some cases, two or more low score points mapped onto the same scaled score, while in other cases no raw scores mapped onto a scaled score. This explains why scaled score distributions contain spikes and gaps that are not evident in raw score distributions. Additionally, on several tests the raw score distributions were negatively skewed (i.e., more students at the higher end of the performance continuum). It is important to understand that in a criterion-referenced test the assessment is designed to optimally measure student performance at the cutscores. Thus, having a skewed distribution in student performance does not mean that the assessment is not precisely measuring student performance at the cutscores.

-14-

² New in 2009, scaled scores were calculated for first-year LEP students who achieved Needs Improvement or higher, for diagnostic purposes only but were not included in school, district, and state aggregations.

Figure 5-1. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 3

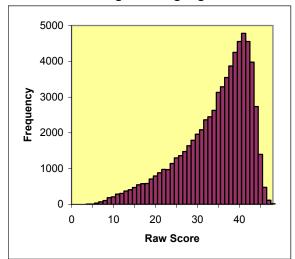


Figure 5-2. 2009 MCAS: Raw Score Distribution—Mathematics Grade 3

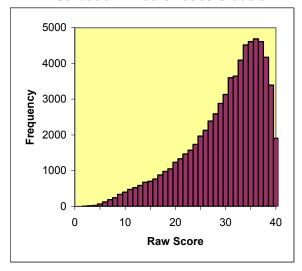


Table 5-1. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 4

DISTRID	Distribution—English Language Arts Grade 4					
Score	Frequency	Percentage	Cumulative			
			Percentage			
200	0	0.0	0.0			
202	2	0.0	0.0			
204	13	0.0	0.0			
206	67	0.1	0.1			
208	247	0.4	0.5			
210	349	0.5	1.0			
212	561	0.8	1.8			
214	1162	1.7	3.5			
216	1837	2.7	6.1			
218	2551	3.7	9.8			
220	2708	3.9	13.7			
222	2272	3.3	17.0			
224	1323	1.9	18.9			
226	1410	2.0	21.0			
228	3253	4.7	25.7			
230	1832	2.6	28.3			
232	2005	2.9	31.2			
234	4537	6.6	37.8			
236	2509	3.6	41.4			
238	2766	4.0	45.4			
240	2930	4.2	49.7			
242	3151	4.6	54.2			
244	6591	9.5	63.8			
246	3343	4.8	68.6			
248	3150	4.6	73.1			
250	2962	4.3	77.4			
252	2699	3.9	81.3			
254	2507	3.6	85.0			
256	2298	3.3	88.3			
258	0	0.0	88.3			
260	1798	2.6	90.9			
262	1662	2.4	93.3			
264	1354	2.0	95.2			
266	0	0.0	95.2			
268	1051	1.5	96.8			
270	856	1.2	98.0			
272	0	0.0	98.0			
274	598	0.9	98.9			
276	0	0.0	98.9			
278	410	0.6	99.5			
280	369	0.5	100.0			
	. 555	5.5				

Figure 5-3. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 4

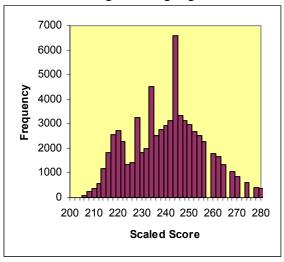


Figure 5-4. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 4

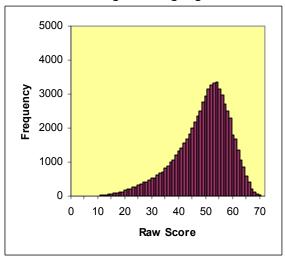


Table 5-2. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 4

Score Frequency Percentage Cumulative Percentage 200 1 0.0 0.0 202 11 0.0 0.0 204 110 0.2 0.2 206 224 0.3 0.5 208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 <		istribution—	<u>Mathematics</u>	Grade 4
202 11 0.0 0.0 204 110 0.2 0.2 206 224 0.3 0.5 208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.	Score	Frequency	Percentage	
204 110 0.2 0.2 206 224 0.3 0.5 208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 <td< td=""><td>200</td><td>1</td><td>0.0</td><td>0.0</td></td<>	200	1	0.0	0.0
206 224 0.3 0.5 208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 <	202	11	0.0	0.0
206 224 0.3 0.5 208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 <	204	110	0.2	0.2
208 344 0.5 1.0 210 545 0.8 1.8 212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988			0.3	
212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 238 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081				
212 675 1.0 2.7 214 914 1.3 4.1 216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 238 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081	210	545	0.8	1.8
216 1717 2.5 6.5 218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 254 3106 4.5 80.0 256 2911	212	675	1.0	
218 2220 3.2 9.7 220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0	214	914	1.3	4.1
220 2826 4.1 13.8 222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777	216	1717	2.5	6.5
222 1112 1.6 15.4 224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 268 0 0.0 84.2 262 2619	218	2220	3.2	9.7
224 2380 3.4 18.8 226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619	220	2826	4.1	13.8
226 2762 4.0 22.8 228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294	222	1112	1.6	15.4
228 1503 2.2 25.0 230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 268 1696	224	2380	3.4	18.8
230 3401 4.9 29.9 232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 97.7 270 0 <	226	2762	4.0	22.8
232 3718 5.4 35.2 234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 97.7 270 0 0.0 97.7 274 0	228	1503	2.2	25.0
234 4145 6.0 41.2 236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 272 0 0.0 97.7 274 0	230	3401	4.9	29.9
236 2222 3.2 44.4 238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0	232	3718	5.4	35.2
238 4763 6.9 51.2 240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6	234	4145	6.0	41.2
240 2461 3.5 54.8 242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 <td>236</td> <td>2222</td> <td>3.2</td> <td>44.4</td>	236	2222	3.2	44.4
242 2579 3.7 58.5 244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	238	4763	6.9	51.2
244 2781 4.0 62.5 246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	240	2461	3.5	54.8
246 2988 4.3 66.8 248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	242	2579	3.7	58.5
248 3007 4.3 71.1 250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	244	2781	4.0	62.5
250 3081 4.4 75.5 252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 274 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	246	2988	4.3	66.8
252 0 0.0 75.5 254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	248	3007	4.3	71.1
254 3106 4.5 80.0 256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	250	3081	4.4	75.5
256 2911 4.2 84.2 258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	252	0	0.0	75.5
258 0 0.0 84.2 260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	254	3106	4.5	80.0
260 2777 4.0 88.2 262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	256	2911	4.2	84.2
262 2619 3.8 92.0 264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	258	0	0.0	84.2
264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	260			88.2
264 2294 3.3 95.3 266 0 0.0 95.3 268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	262	2619	3.8	92.0
268 1696 2.4 97.7 270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	264			95.3
270 0 0.0 97.7 272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	266	0	0.0	95.3
272 0 0.0 97.7 274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	268	1696	2.4	97.7
274 0 0.0 97.7 276 1114 1.6 99.3 278 0 0.0 99.3	270	0	0.0	97.7
276 1114 1.6 99.3 278 0 0.0 99.3	272	0	0.0	97.7
278 0 0.0 99.3	274	0	0.0	97.7
	276	1114	1.6	
280 474 0.7 100.0	278			
	280	474	0.7	100.0

Figure 5-5. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 4

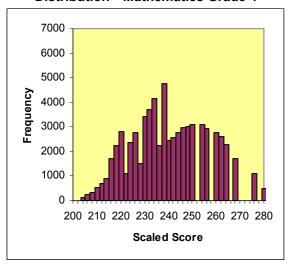


Figure 5-6. 2009 MCAS: Raw Score Distribution—Mathematics Grade 4

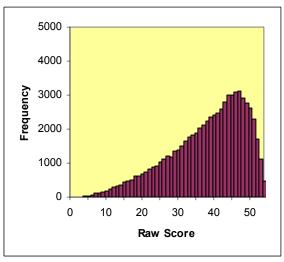


Table 5-3. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 5

DISTRID	Distribution—English Language Arts Grade 5					
Score	Frequency	Percentage	Cumulative Percentage			
200	1	0.0	0.0			
202	3	0.0	0.0			
204	15	0.0	0.0			
206	69	0.1	0.1			
208	145	0.2	0.3			
210	446	0.6	1.0			
212	503	0.7	1.7			
214	634	0.9	2.6			
216	848	1.2	3.8			
218	1628	2.3	6.1			
220	1478	2.1	8.2			
222	1708	2.4	10.6			
224	1022	1.5	12.1			
226	1156	1.6	13.7			
228	1263	1.8	15.5			
230	3051	4.3	19.8			
232	1802	2.6	22.4			
234	2015	2.9	25.3			
236	2190	3.1	28.4			
238	5355	7.6	36.0			
240	3086	4.4	40.4			
242	3493	5.0	45.3			
244	3845	5.5	50.8			
246	4332	6.2	56.9			
248	0	0.0	56.9			
250	4782	6.8	63.7			
252	5051	7.2	70.9			
254	0	0.0	70.9			
256	5003	7.1	78.0			
258	4661	6.6	84.6			
260	0	0.0	84.6			
262	3735	5.3	89.9			
264	0	0.0	89.9			
266	2847	4.0	94.0			
268	0	0.0	94.0			
270	1968	2.8	96.8			
272	0	0.0	96.8			
274	0	0.0	96.8			
276	1233	1.8	98.5			
278	0	0.0	98.5			
280	1037	1.5	100.0			

Figure 5-7. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 5

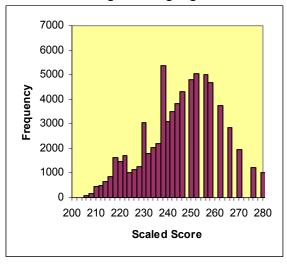


Figure 5-8. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 5

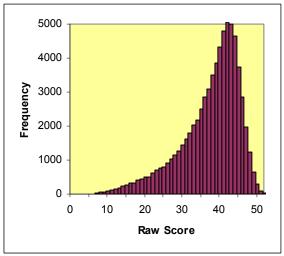


Table 5-4. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 5

Score Frequency Percentage Cumulative Percentage 200 2 0.0 0.0 202 99 0.1 0.1 204 303 0.4 0.6 206 607 0.9 1.4 208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236	D	<u> istribution—</u> i	viatnematics	Grade 5
202 99 0.1 0.1 204 303 0.4 0.6 206 607 0.9 1.4 208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 <t< td=""><td>Score</td><td>Frequency</td><td>Percentage</td><td></td></t<>	Score	Frequency	Percentage	
204 303 0.4 0.6 206 607 0.9 1.4 208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239	200	2	0.0	0.0
206 607 0.9 1.4 208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310	202	99	0.1	0.1
206 607 0.9 1.4 208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310	204	303	0.4	0.6
208 351 0.5 1.9 210 856 1.2 3.1 212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 250 2703				
212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703				
212 1050 1.5 4.6 214 1717 2.4 7.1 216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 244 2310 3.3 54.6 244 231 3.3 54.6 246 2428	210	856	1.2	3.1
216 2802 4.0 11.0 218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 <td>212</td> <td>1050</td> <td>1.5</td> <td>4.6</td>	212	1050	1.5	4.6
218 3594 5.1 16.1 220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 258 2923 <td>214</td> <td>1717</td> <td>2.4</td> <td>7.1</td>	214	1717	2.4	7.1
220 3248 4.6 20.7 222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923	216	2802	4.0	11.0
222 1249 1.8 22.5 224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910	218	3594	5.1	16.1
224 1285 1.8 24.3 226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906	220	3248	4.6	20.7
226 2635 3.7 28.0 228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 <td>222</td> <td>1249</td> <td>1.8</td> <td>22.5</td>	222	1249	1.8	22.5
228 1515 2.1 30.2 230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 268 0	224	1285	1.8	24.3
230 1571 2.2 32.4 232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157	226	2635	3.7	28.0
232 1643 2.3 34.7 234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157 3.1 96.3 274 1691	228	1515	2.1	30.2
234 3524 5.0 39.7 236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691	230	1571	2.2	32.4
236 1889 2.7 42.4 238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 278 0	232	1643	2.3	34.7
238 1987 2.8 45.2 240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 278 0 0.0 98.7 278 0 <	234	3524	5.0	39.7
240 2081 2.9 48.2 242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	236	1889	2.7	42.4
242 2239 3.2 51.3 244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 278 0 0.0 98.7 278 0 0.0 98.7	238	1987	2.8	45.2
244 2310 3.3 54.6 246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	240	2081	2.9	48.2
246 2428 3.4 58.1 248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 278 0 0.0 98.7 278 0 0.0 98.7	242	2239	3.2	51.3
248 2511 3.6 61.6 250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	244	2310	3.3	54.6
250 2703 3.8 65.4 252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	246	2428	3.4	58.1
252 2760 3.9 69.4 254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	248	2511		61.6
254 2782 3.9 73.3 256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	250	2703	3.8	65.4
256 0 0.0 73.3 258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	252	2760	3.9	69.4
258 2923 4.1 77.4 260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	254	2782	3.9	73.3
260 2910 4.1 81.6 262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	256	0	0.0	73.3
262 2906 4.1 85.7 264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	258	2923	4.1	77.4
264 2798 4.0 89.6 266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7		2910	4.1	81.6
266 2517 3.6 93.2 268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	262	2906	4.1	85.7
268 0 0.0 93.2 270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	264	2798	4.0	89.6
270 2157 3.1 96.3 272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	266	2517	3.6	93.2
272 0 0.0 96.3 274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	268	0	0.0	93.2
274 1691 2.4 98.7 276 0 0.0 98.7 278 0 0.0 98.7	270	2157	3.1	96.3
276 0 0.0 98.7 278 0 0.0 98.7	272	0	0.0	96.3
278 0 0.0 98.7	274	1691	2.4	98.7
	276	0	0.0	98.7
280 952 1.3 100.0	278	0		98.7
	280	952	1.3	100.0

Figure 5-9. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 5

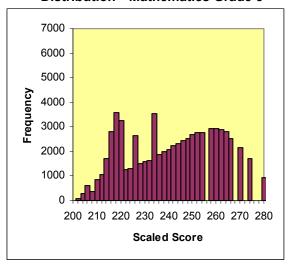


Figure 5-10. 2009 MCAS: Raw Score Distribution—Mathematics Grade 5

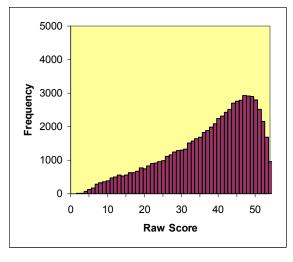


Table 5-5. 2009 MCAS: Scaled Score Distribution—Science and Technology/Engineering Grade 5

rechnology/Engineering Grade 5			
Score	Frequency	Percentage	Cumulative
			Percentage
200	0	0.0	0.0
202	0	0.0	0.0
204	51	0.1	0.1
206	133	0.2	0.3
208	296	0.4	0.7
210	449	0.6	1.3
212	667	0.9	2.3
214	958	1.4	3.6
216	2170	3.1	6.7
218	3035	4.3	11.0
220	2769	3.9	14.9
222	3253	4.6	19.5
224	1839	2.6	22.1
226	2009	2.8	25.0
228	2224	3.1	28.1
230	2349	3.3	31.4
232	2506	3.5	35.0
234	5381	7.6	42.6
236	2899	4.1	46.7
238	2846	4.0	50.7
240	2937	4.2	54.9
242	2968	4.2	59.1
244	2912	4.1	63.2
246	0	0.0	63.2
248	2954	4.2	67.4
250	2941	4.2	71.6
252	2864	4.1	75.6
254	0	0.0	75.6
256	2713	3.8	79.5
258	2557	3.6	83.1
260	2396	3.4	86.5
262	2166	3.1	89.5
264	1895	2.7	92.2
266	1641	2.3	94.5
268	1344	1.9	96.4
270	0	0.0	96.4
272	967	1.4	97.8
274	709	1.0	98.8
276	0	0.0	98.8
278	457	0.6	99.5
280	379	0.5	100.0
	0.0	3.0	100.0

Figure 5-11. 2009 MCAS: Scaled Score Distribution—Science and Technology/Engineering Grade 5

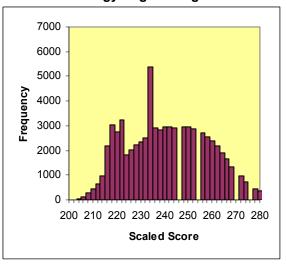


Figure 5-12. 2009 MCAS: Raw Score Distribution—Science and Technology/Engineering Grade 5

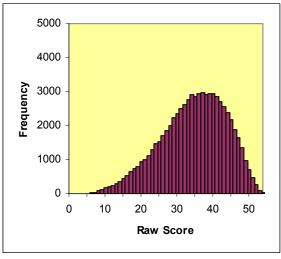


Table 5-6. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 6

DISTRIBL	ition—Englis	sn ∟anguage	Arts Grade 6
Score	Frequency	Percentage	Cumulative Percentage
200	0	0.0	0.0
202	2	0.0	0.0
204	26	0.0	0.0
206	131	0.2	0.2
208	216	0.3	0.5
210	552	0.8	1.3
212	531	0.8	2.1
214	685	1.0	3.1
216	1306	1.9	4.9
218	1718	2.5	7.4
220	1504	2.2	9.6
222	887	1.3	10.8
224	962	1.4	12.2
226	2388	3.4	15.6
228	1392	2.0	17.6
230	1583	2.3	19.9
232	1815	2.6	22.5
234	2048	2.9	25.4
236	2241	3.2	28.6
238	2532	3.6	32.3
240	2886	4.1	36.4
242	3363	4.8	41.2
244	3693	5.3	46.5
246	3913	5.6	52.1
248	4394	6.3	58.4
250	4560	6.5	65.0
252	4540	6.5	71.5
254	4380	6.3	77.8
256	0	0.0	77.8
258	4040	5.8	83.5
260	3536	5.1	88.6
262	0	0.0	88.6
264	2885	4.1	92.7
266	0	0.0	92.7
268	2206	3.2	95.9
270	0	0.0	95.9
272	1486	2.1	98.0
274	0	0.0	98.0
276	0	0.0	98.0
278	823	1.2	99.2
280	544	0.8	100.0

Figure 5-13. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 6

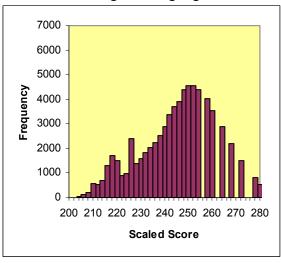


Figure 5-14. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 6

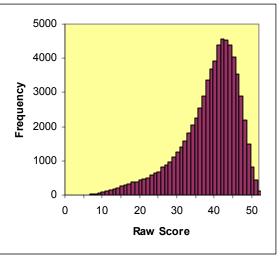


Table 5-7. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 6

וט	stribution—i	viatnematics	Grade 6
Score	Frequency	Percentage	Cumulative Percentage
200	1	0.0	0.0
202	42	0.1	0.1
204	137	0.2	0.3
206	295	0.4	0.7
208	244	0.3	1.0
210	611	0.9	1.9
212	798	1.1	3.0
214	1587	2.3	5.3
216	2936	4.2	9.5
218	3850	5.5	15.0
220	3397	4.9	19.9
222	1268	1.8	21.7
224	1341	1.9	23.6
226	2902	4.2	27.8
228	1524	2.2	29.9
230	1620	2.3	32.3
232	1627	2.3	34.6
234	1740	2.5	37.1
236	1757	2.5	39.6
238	1921	2.7	42.3
240	1906	2.7	45.1
242	4081	5.8	50.9
244	2257	3.2	54.1
246	2236	3.2	57.3
248	2453	3.5	60.8
250	2525	3.6	64.4
252	2555	3.7	68.1
254	2723	3.9	72.0
256	0	0.0	72.0
258	2674	3.8	75.8
260	2801	4.0	79.8
262	3005	4.3	84.1
264	2892	4.1	88.3
266	2737	3.9	92.2
268	2459	3.5	95.7
270	0	0.0	95.7
272	0	0.0	95.7
274	1923	2.8	98.4
276	0	0.0	98.4
278	0	0.0	98.4
280	1084	1.6	100.0

Figure 5-15. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 6

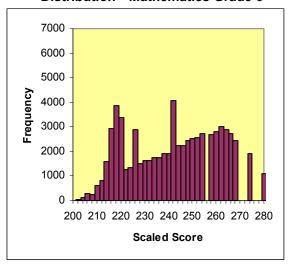


Figure 5-16. 2009 MCAS: Raw Score Distribution—Mathematics Grade 6

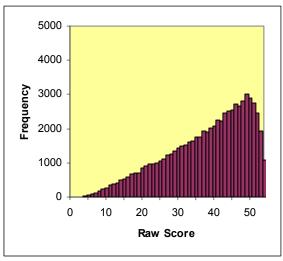


Table 5-8. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 7

DISTRID	ution—Englis	sn Language	Arts Grade /
Score	Frequency	Percentage	Cumulative Percentage
200	0	0.0	0.0
202	2	0.0	0.0
204	2	0.0	0.0
206	28	0.0	0.0
208	83	0.1	0.2
210	233	0.3	0.5
212	378	0.5	1.0
214	517	0.7	1.8
216	1179	1.7	3.4
218	1224	1.7	5.2
220	1660	2.4	7.5
222	691	1.0	8.5
224	1631	2.3	10.8
226	946	1.3	12.2
228	1029	1.5	13.6
230	2395	3.4	17.0
232	1335	1.9	18.9
234	1462	2.1	21.0
236	3449	4.9	25.9
238	2081	3.0	28.9
240	2129	3.0	31.9
242	5106	7.2	39.1
244	5490	7.8	46.9
246	6169	8.8	55.7
248	3205	4.5	60.2
250	3231	4.6	64.8
252	6376	9.1	73.9
254	2970	4.2	78.1
256	2841	4.0	82.1
258	2637	3.7	85.9
260	2365	3.4	89.2
262	2108	3.0	92.2
264	1746	2.5	94.7
266	0	0.0	94.7
268	1349	1.9	96.6
270	1008	1.4	98.0
272	0	0.0	98.0
274	652	0.9	99.0
276	0	0.0	99.0
278	0	0.0	99.0
280	734	1.0	100.0

Figure 5-17. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 7

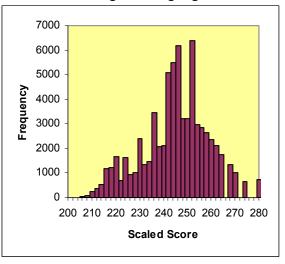


Figure 5-18. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 7

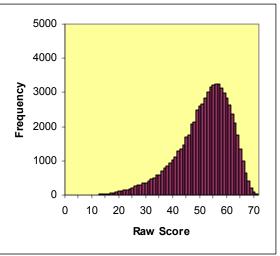


Table 5-9. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 7

Score Frequency Percentage Cumulative Percentage 200 1 0.0 0.0 202 105 0.1 0.1 204 325 0.5 0.6 206 256 0.4 1.0 208 372 0.5 1.5 210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236	Distribution—Mathematics Grade /			
202 105 0.1 0.1 204 325 0.5 0.6 206 256 0.4 1.0 208 372 0.5 1.5 210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 <	Score	Frequency	Percentage	
204 325 0.5 0.6 206 256 0.4 1.0 208 372 0.5 1.5 210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 226 2854 4.0 32.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 231 1694 2.4 39.7 234 3413 4.8 44.5 238 2002 2.8 50.0 240 1993	200	1	0.0	0.0
206 256 0.4 1.0 208 372 0.5 1.5 210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522	202	105	0.1	0.1
208 372 0.5 1.5 210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354	204	325	0.5	0.6
210 906 1.3 2.8 212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322	206	256	0.4	1.0
212 1103 1.6 4.3 214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546	208	372	0.5	1.5
214 2620 3.7 8.0 216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 <td>210</td> <td>906</td> <td>1.3</td> <td>2.8</td>	210	906	1.3	2.8
216 3230 4.6 12.6 218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 <td>212</td> <td>1103</td> <td>1.6</td> <td>4.3</td>	212	1103	1.6	4.3
218 5139 7.3 19.9 220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 <td>214</td> <td>2620</td> <td>3.7</td> <td>8.0</td>	214	2620	3.7	8.0
220 3677 5.2 25.1 222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 260 2882 <td>216</td> <td>3230</td> <td>4.6</td> <td>12.6</td>	216	3230	4.6	12.6
222 1281 1.8 26.9 224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 260 2882 4.1 87.9 264 2550 <td>218</td> <td>5139</td> <td>7.3</td> <td>19.9</td>	218	5139	7.3	19.9
224 1367 1.9 28.8 226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 <td>220</td> <td>3677</td> <td>5.2</td> <td>25.1</td>	220	3677	5.2	25.1
226 2854 4.0 32.8 228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 264 2550 3.6 95.3 268 2057	222	1281	1.8	26.9
228 1528 2.2 35.0 230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 268 2057	224	1367	1.9	28.8
230 1659 2.3 37.3 232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 264 2550 3.6 95.3 264 2550 3.6 95.3 268 2057 2.9 98.2 270 0	226	2854	4.0	32.8
232 1694 2.4 39.7 234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 264 2550 3.6 95.3 264 2550 3.6 95.3 266 0 0.0 98.2 270 0 0.0 98.2 272 0 <	228	1528	2.2	35.0
234 3413 4.8 44.5 236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0	230	1659	2.3	37.3
236 1828 2.6 47.1 238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0	232	1694	2.4	39.7
238 2002 2.8 50.0 240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0 0.0 98.2 278 0 0.0	234	3413	4.8	44.5
240 1993 2.8 52.8 242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 <td>236</td> <td>1828</td> <td>2.6</td> <td>47.1</td>	236	1828	2.6	47.1
242 2113 3.0 55.8 244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	238	2002	2.8	50.0
244 4522 6.4 62.1 246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	240	1993	2.8	52.8
246 2354 3.3 65.5 248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	242	2113	3.0	55.8
248 2322 3.3 68.8 250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	244	4522	6.4	62.1
250 2546 3.6 72.3 252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 274 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	246	2354	3.3	65.5
252 2582 3.6 76.0 254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	248	2322	3.3	68.8
254 2777 3.9 79.9 256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	250	2546	3.6	72.3
256 2768 3.9 83.8 258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	252	2582	3.6	76.0
258 0 0.0 83.8 260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	254	2777	3.9	79.9
260 2882 4.1 87.9 262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	256	2768	3.9	83.8
262 2704 3.8 91.7 264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	258	0	0.0	83.8
264 2550 3.6 95.3 266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	260			
266 0 0.0 95.3 268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	262	2704	3.8	91.7
268 2057 2.9 98.2 270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	264	2550	3.6	95.3
270 0 0.0 98.2 272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	266	0	0.0	95.3
272 0 0.0 98.2 274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	268	2057	2.9	98.2
274 0 0.0 98.2 276 0 0.0 98.2 278 0 0.0 98.2	270	0	0.0	98.2
276 0 0.0 98.2 278 0 0.0 98.2	272	0	0.0	98.2
278 0 0.0 98.2	274	0	0.0	98.2
	276	0	0.0	98.2
280 1251 1.8 100.0	278	0	0.0	98.2
	280	1251	1.8	100.0

Figure 5-19. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 7

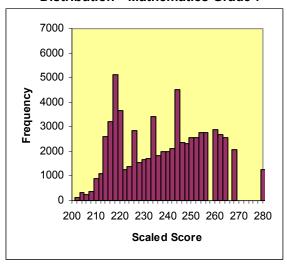


Figure 5-20. 2009 MCAS: Raw Score Distribution—Mathematics Grade 7

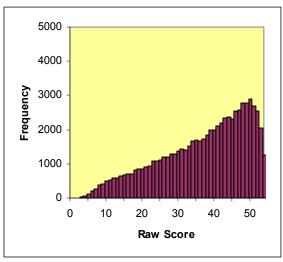


Table 5-10. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 8

טוטנוט	ution—Engli	sii Laiiguage	Arts Grade 6
Score	Frequency	Percentage	Cumulative Percentage
200	0	0.0	0.0
202	4	0.0	0.0
204	12	0.0	0.0
206	54	0.1	0.1
208	160	0.2	0.3
210	292	0.4	0.7
212	479	0.7	1.4
214	288	0.4	1.8
216	724	1.0	2.8
218	1415	2.0	4.8
220	1115	1.5	6.3
222	629	0.9	7.2
224	709	1.0	8.2
226	753	1.0	9.2
228	860	1.2	10.4
230	1999	2.8	13.2
232	1099	1.5	14.7
234	1235	1.7	16.4
236	1255	1.7	18.2
238	1480	2.1	20.2
240	3520	4.9	25.1
242	4200	5.8	30.9
244	5216	7.2	38.2
246	6283	8.7	46.9
248	3497	4.9	51.7
250	7699	10.7	62.4
252	4213	5.8	68.3
254	4103	5.7	73.9
256	3958	5.5	79.4
258	3640	5.1	84.5
260	3276	4.5	89.0
262	0	0.0	89.0
264	2839	3.9	93.0
266	2243	3.1	96.1
268	0	0.0	96.1
270	0	0.0	96.1
272	1542	2.1	98.2
274	0	0.0	98.2
276	0	0.0	98.2
278	886	1.2	99.5
280	390	0.5	100.0

Figure 5-21. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 8

Figure 5-22. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 8

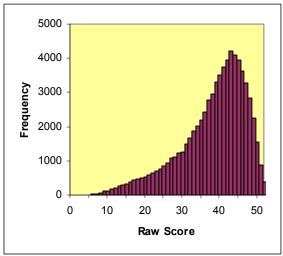


Table 5-11. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 8

D	istribution—l	Mathematics (Grade 8
Score	Frequency	Percentage	Cumulative Percentage
200	2	0.0	0.0
202	26	0.0	0.0
204	288	0.4	0.4
206	262	0.4	0.8
208	431	0.6	1.4
210	1230	1.7	3.1
212	1597	2.2	5.3
214	2986	4.1	9.5
216	3319	4.6	14.1
218	5974	8.3	22.3
220	4131	5.7	28.1
222	1370	1.9	30.0
224	1478	2.0	32.0
226	1461	2.0	34.0
228	1539	2.1	36.2
230	1616	2.2	38.4
232	3277	4.5	43.0
234	1695	2.3	45.3
236	1711	2.4	47.7
238	1911	2.6	50.3
240	1836	2.5	52.9
242	1933	2.7	55.6
244	3956	5.5	61.0
246	2021	2.8	63.8
248	2150	3.0	66.8
250	2129	3.0	69.8
252	2240	3.1	72.9
254	2297	3.2	76.1
256	2282	3.2	79.2
258	0	0.0	79.2
260	4655	6.5	85.7
262	2232	3.1	88.8
264	2195	3.0	91.8
266	2058	2.9	94.7
268	0	0.0	94.7
270	1782	2.5	97.1
272	0	0.0	97.1
274	0	0.0	97.1
276	1331	1.8	99.0
278	0	0.0	99.0
280	734	1.0	100.0

Figure 5-23. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 8

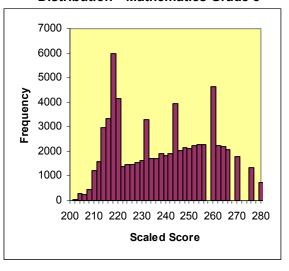


Figure 5-24. 2009 MCAS: Raw Score Distribution—Mathematics Grade 8

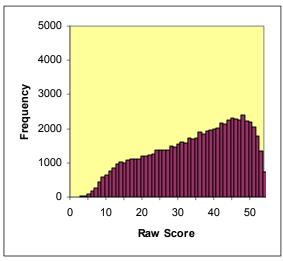


Table 5-12. 2009 MCAS: Scaled Score
Distribution—Science and
Technology/Engineering Grade 8

rechnology/Engineering Grade 6			
Score	Frequency	Percentage	Cumulative Percentage
200	1	0.0	0.0
202	3	0.0	0.0
204	125	0.2	0.2
206	340	0.5	0.7
208	591	0.8	1.5
210	464	0.6	2.1
212	578	0.8	2.9
214	2441	3.4	6.3
216	3418	4.7	11.0
218	6096	8.5	19.5
220	3649	5.1	24.6
222	4067	5.6	30.2
224	2135	3.0	33.2
226	2241	3.1	36.3
228	2326	3.2	39.5
230	4899	6.8	46.3
232	2494	3.5	49.8
234	2489	3.5	53.2
236	2584	3.6	56.8
238	2544	3.5	60.3
240	5161	7.2	67.5
242	2439	3.4	70.9
244	4955	6.9	77.7
246	2330	3.2	81.0
248	2172	3.0	84.0
250	2035	2.8	86.8
252	1895	2.6	89.4
254	1742	2.4	91.9
256	1517	2.1	94.0
258	1271	1.8	95.7
260	1037	1.4	97.2
262	0	0.0	97.2
264	820	1.1	98.3
266	0	0.0	98.3
268	555	0.8	99.1
270	0	0.0	99.1
272	342	0.5	99.5
274	0	0.0	99.5
276	0	0.0	99.5
278	0	0.0	99.5
280	325	0.5	100.0

Figure 5-25. 2009 MCAS: Scaled Score Distribution—Science and Technology/Engineering Grade 8

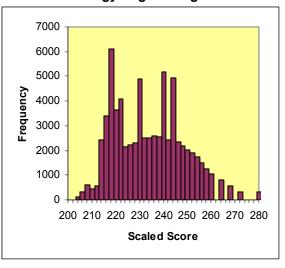


Figure 5-26. 2009 MCAS: Raw Score Distribution—Science and Technology/Engineering Grade 8

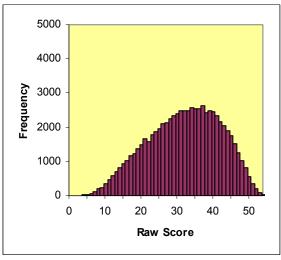


Table 5-13. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 10

DISTRIBU	ition—Englis	n Language <i>F</i>	arts Grade 10
Score	Frequency	Percentage	Cumulative Percentage
200	1	0.0	0.0
202	3	0.0	0.0
204	30	0.0	0.0
206	80	0.1	0.2
208	84	0.1	0.3
210	61	0.1	0.4
212	212	0.3	0.7
214	167	0.2	0.9
216	444	0.6	1.5
218	1160	0.0	3.2
220	1222	1.7	5.0
222	402	0.6	5.5
224	859	1.2	6.8
226	467	0.7	7.4
228	1119	1.6	9.0
230	657	0.9	10.0
232	1672	2.4	12.4
234	924	1.3	13.7
236	2171	3.1	16.8
238	1313	1.9	18.7
240	3068	4.4	23.1
242	1809	2.6	25.7
244	4183	6.0	31.6
246	4908	7.0	38.7
248	2854	4.1	42.8
250	2889	4.1	46.9
252	6397	9.2	56.0
254	3377	4.8	60.9
256	3496	5.0	65.9
258	3487	5.0	70.9
260	3430	4.9	75.8
262	6421	9.2	85.0
264	2804	4.0	89.0
266	2341	3.4	92.3
268	1818	2.6	94.9
270	1401	2.0	97.0
272	0	0.0	97.0
274	1010	1.4	98.4
276	652	0.9	99.3
278	0	0.0	99.3
280	467	0.7	100.0

Figure 5-27. 2009 MCAS: Scaled Score Distribution—English Language Arts Grade 10

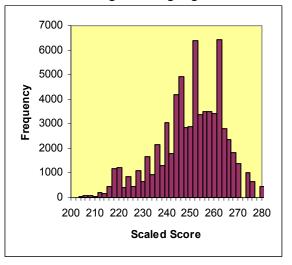


Figure 5-28. 2009 MCAS: Raw Score Distribution—English Language Arts Grade 10

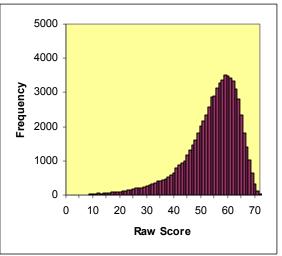


Table 5-14. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 10

Distribution—Mathematics Grade 10			
Score	Frequency	Percentage	Cumulative Percentage
200	1	0.0	0.0
202	10	0.0	0.0
204	49	0.1	0.1
206	206	0.3	0.4
208	205	0.3	0.7
210	0	0.0	0.0
212	294	0.4	1.1
214	371	0.5	1.6
216	918	1.3	2.9
218	2568	3.7	6.6
220	2715	3.9	10.5
222	1048	1.5	12.0
224	0	0.0	12.0
226	1107	1.6	13.6
228	1159	1.7	15.3
230	1239	1.8	17.1
232	1285	1.8	18.9
234	1366	2.0	20.9
236	1412	2.0	22.9
238	1419	2.0	24.9
240	1462	2.1	27.0
242	1467	2.1	29.2
244	2913	4.2	33.3
246	1500	2.2	35.5
248	1612	2.3	37.8
250	2984	4.3	42.1
252	1450	2.1	44.2
254	1520	2.2	46.4
256	2999	4.3	50.7
258	1573	2.3	52.9
260	4614	6.6	59.5
262	6312	9.1	68.6
264	6405	9.2	77.8
266	5236	7.5	85.3
268	3668	5.3	90.6
270	1776	2.6	93.1
272	1706	2.4	95.6
274	1417	0.0	95.6
276	0	0.0	95.6
278	1105	1.6	99.2
280	549	0.8	100.0

Figure 5-29. 2009 MCAS: Scaled Score Distribution—Mathematics Grade 10

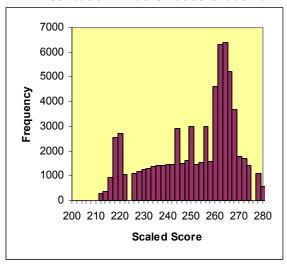


Figure 5-30. 2009 MCAS: Raw Score Distribution—Mathematics Grade 10

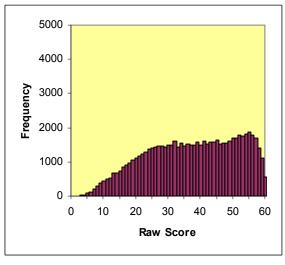


Table 5-15. 2009 MCAS: Scaled Score Distribution—High School Biology (Grades 9–11)

(Grades 9=11)			
Score	Frequency	Percentage	Cumulative Percentage
200	0	0.0	0.0
202	11	0.0	0.0
204	57	0.1	0.1
206	181	0.3	0.4
208	490	0.9	1.3
210	384	0.7	2.0
212	472	0.8	2.8
214	1385	2.5	5.3
216	1676	3.0	8.2
218	3957	7.0	15.3
220	2142	3.8	19.0
222	1064	1.9	20.9
224	1133	2.0	22.9
226	1173	2.1	25.0
228	1114	2.0	27.0
230	1201	2.1	29.1
232	2448	4.3	33.5
234	1237	2.2	35.6
236	1428	2.5	38.2
238	1369	2.4	40.6
240	2918	5.2	45.8
242	1486	2.6	48.4
244	3001	5.3	53.7
246	3131	5.5	59.3
248	3300	5.8	65.1
250	1649	2.9	68.0
252	3358	5.9	74.0
254	1636	2.9	76.9
256	1622	2.9	79.7
258	3066	5.4	85.2
260	1441	2.6	87.7
262	2491	4.4	92.1
264	1064	1.9	94.0
266	1600	2.8	96.9
268	597	1.1	97.9
270	470	0.8	98.7
272	330	0.6	99.3
274	0	0.0	99.3
276	210	0.4	99.7
278	101	0.2	99.9
280	66	0.1	100.0

Figure 5-31. 2009 MCAS: Scaled Score Distribution—High School Biology (Grades 9–11)

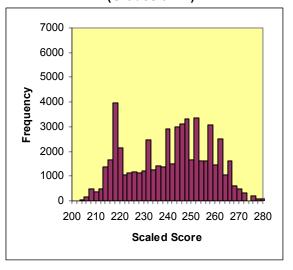


Figure 5-32. 2009 MCAS: Raw Score Distribution—High School Biology (Grades 9–11)

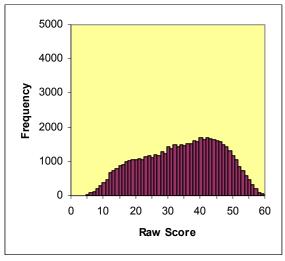


Table 5-16. 2009 MCAS Scaled Score Distribution—High School Chemistry (Grades 9–11)

(Grades 9-11)			
Score	Frequency	Percentage	Cumulative
200	0	0.0	Percentage 0.0
202	2	0.1	0.1
204	9	0.1	0.1
	82		
206		3.1	3.5
208	54	2.1	5.6
210	0	0.0	5.6
212	81	3.1	8.7
214	200	7.6	16.3
216	351	13.4	29.7
218	450	0.0	29.7
220	228	8.7	55.5
222	0	0.0	55.5
224	43	1.6	57.1
226	34	1.3	58.4
228	32	1.2	59.6
230	52	2.0	61.6
232	56	2.1	63.7
234	39	1.5	65.2
236	48	1.8	67.1
238	46	1.8	68.8
240	40	1.5	70.3
242	89	3.4	73.7
244	52	2.0	75.7
246	36	1.4	77.1
248	65	2.5	79.6
250	35	1.3	80.9
252	31	1.2	82.1
254	73	2.8	84.8
256	38	1.4	86.3
258	30	1.1	87.4
260	52	2.0	89.4
262	102	3.9	93.3
264	46	1.8	95.0
266	24	0.9	96.0
268	50	1.9	97.9
270	18	0.7	98.6
272	14	0.5	99.1
274	0	0.0	99.1
276	16	0.6	99.7
278	0	0.0	99.7
280	8	0.3	100.0
		-	-

Figure 5-33. 2009 MCAS: Scaled Score Distribution—High School Chemistry (Grades 9–11)

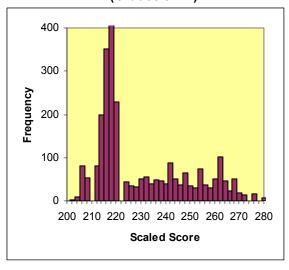


Figure 5-34. 2009 MCAS: Raw Score Distribution—High School Chemistry (Grades 9-11)

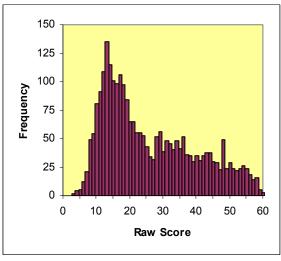


Table 5-17. 2009 MCAS: Scaled Score Distribution—High School Introductory Physics (Grades 9–11)

Score Frequency Percentage Percentage 200 0 0.0 0.0 202 2 0.0 0.0 204 13 0.1 0.1 206 35 0.2 0.3 208 134 0.7 1.0 210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 <t< th=""><th colspan="5">Physics (Grades 9–11)</th></t<>	Physics (Grades 9–11)				
200 0 0.0 0.0 202 2 0.0 0.0 204 13 0.1 0.1 206 35 0.2 0.3 208 134 0.7 1.0 210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 <t< td=""><td>Score</td><td>Frequency</td><td>Percentage</td><td>Cumulative Percentage</td></t<>	Score	Frequency	Percentage	Cumulative Percentage	
204 13 0.1 0.1 206 35 0.2 0.3 208 134 0.7 1.0 210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4	200	0	0.0		
206 35 0.2 0.3 208 134 0.7 1.0 210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5		2		0.0	
208 134 0.7 1.0 210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7	204	13	0.1	0.1	
210 116 0.6 1.6 212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 <td>206</td> <td>35</td> <td>0.2</td> <td>0.3</td>	206	35	0.2	0.3	
212 158 0.9 2.5 214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 </td <td>208</td> <td>134</td> <td>0.7</td> <td>1.0</td>	208	134	0.7	1.0	
214 442 2.4 4.9 216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5<	210	116	0.6	1.6	
216 604 3.3 8.2 218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4	212	158	0.9	2.5	
218 1401 7.6 15.8 220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.	214	442	2.4	4.9	
220 738 4.0 19.8 222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3	216	604	3.3	8.2	
222 439 2.4 22.2 224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3	218	1401	7.6	15.8	
224 400 2.2 24.4 226 396 2.2 26.6 228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6	220	738	4.0	19.8	
226 396 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9	222	439	2.4	22.2	
228 406 2.2 28.8 230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9	224	400	2.2	·	
230 867 4.7 33.5 232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2	226	396	2.2	26.6	
232 476 2.6 36.1 234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 272 0 0.0 </td <td>228</td> <td>406</td> <td>2.2</td> <td>28.8</td>	228	406	2.2	28.8	
234 452 2.5 38.5 236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 274 133 0.7	230	867	4.7	33.5	
236 470 2.6 41.1 238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 274 133 0.7 98.9 276 106 1.6	232	476	2.6	36.1	
238 460 2.5 43.6 240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 </td <td>234</td> <td>452</td> <td>2.5</td> <td>38.5</td>	234	452	2.5	38.5	
240 982 5.3 48.9 242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 <td>236</td> <td>470</td> <td>2.6</td> <td>41.1</td>	236	470	2.6	41.1	
242 435 2.4 51.3 244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	238	460	2.5	43.6	
244 1007 5.5 56.8 246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	240	982	5.3	48.9	
246 495 2.7 59.5 248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	242	435	2.4	51.3	
248 989 5.4 64.9 250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	244	1007	5.5	56.8	
250 485 2.6 67.5 252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	246	495	2.7	59.5	
252 1011 5.5 73.0 254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	248	989	5.4	64.9	
254 448 2.4 75.5 256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	250	485	2.6	67.5	
256 880 4.8 80.2 258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	252	1011	5.5	73.0	
258 425 2.3 82.6 260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	254	448	2.4	75.5	
260 787 4.3 86.8 262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	256	880	4.8	80.2	
262 653 3.6 90.4 264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	258	425	2.3	82.6	
264 314 1.7 92.1 266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	260	787	4.3	86.8	
266 529 2.9 95.0 268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	262	653	3.6	90.4	
268 214 1.2 96.2 270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	264	314	1.7	92.1	
270 368 2.0 98.2 272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	266	529	2.9	95.0	
272 0 0.0 98.2 274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	268	214	1.2	96.2	
274 133 0.7 98.9 276 106 1.6 99.5 278 0 0.0 99.5	270	368	2.0	98.2	
276 106 1.6 99.5 278 0 0.0 99.5	272	0	0.0	98.2	
278 0 0.0 99.5	274	133	0.7	98.9	
	276	106	1.6	99.5	
	278	0	0.0	99.5	
280 99 0.5 100.0	280	99	0.5	100.0	

Figure 5-35. 2009 MCAS: Scaled Score Distribution—High School Introductory Physics (Grades 9–11)

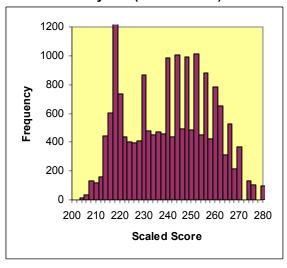


Figure 5-36. 2009 MCAS: Raw Score Distribution—High School Introductory Physics (Grades 9–11)

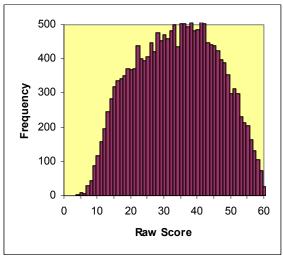


Table 5-18. 2009 MCAS: Scaled Score Distribution—High School Technology/Engineering (Grades 9-11)

	(Grades 9–11)									
Score	Frequency	Percentage	Cumulative Percentage							
200	0	0.0	0.0							
202	0	0.0	0.0							
204	0	0.0	0.0							
206	0	0.0	0.0							
208	0	0.0	0.0							
210	2	0.1	0.1							
212	5	0.2	0.3							
214	53	2.3	2.6							
216	93	4.0	6.6							
218	167	7.2	13.8							
220	159	6.9	20.7							
222	49	2.1	22.8							
224	53	2.3	25.1							
226	56	2.4	27.6							
228	105	4.5	32.1							
230	82	3.5	35.7							
232	87	3.8	39.4							
234	64	2.8	42.2							
236	71	3.1	45.3							
238	84	3.6	48.9							
240	168	7.3	56.2							
242	181	7.8	64.0							
244	77	3.3	67.3							
246	177	7.7	75.0							
248	137	5.9	80.9							
250	78	3.4	84.3							
252	121	5.2	89.5							
254	36	1.6	91.1							
256	43	1.9	92.9							
258	42	1.8	94.8							
260	54	2.3	97.1							
262	23	1.0	98.1							
264	10	0.4	98.5							
266	12	0.5	99.0							
268	8	0.3	99.4							
270	7	0.3	99.7							
272	0	0.0	99.7							
274	7	0.3	100.0							
276	0	0.0	100.0							
278	0	0.0	100.0							
280	0	0.0	100.0							

Figure 5-37. 2009 MCAS: Scaled Score Distribution—High School Technology/Engineering (Grades 9–11)

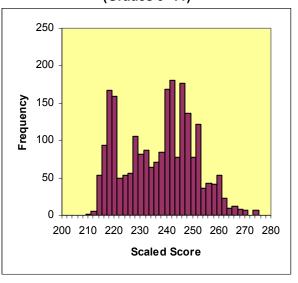
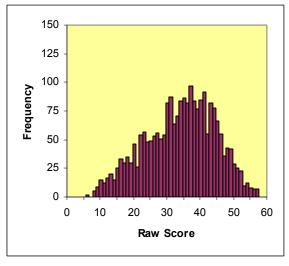



Figure 5-38. 2009 MCAS: Raw Score Distribution—High School Technology/Engineering (Grades 9-11)

5.3 MCAS-Alt Results

Results for the MCAS-Alt are reported according to the following seven performance levels:

- Advanced (Above Proficient at grade 3)
- Proficient
- Needs Improvement
- Progressing
- Emerging
- Awareness
- Incomplete

The MCAS-Alt performance levels of *Incomplete*, *Awareness*, *Emerging*, and *Progressing* are included in the *Warning/Failing* performance level data shown throughout this document and on MCAS reports of school and district results. Descriptions of the MCAS-Alt performance levels are provided in section 5.1.2.1 of the 2007 MCAS Technical Report.

5.3.1 Performance Level Results

Tables 5-19 through 5-25 display the 2009 MCAS-Alt performance level results for each grade and content area.

Table 5-19. 2009 MCAS-Alt: Performance Level Results—Grade 3

		Content Area							
Performance Level	English La	nguage Arts	Mathe	ematics					
	Number	Percentage*	Number	Percentage*					
Incomplete	87	6.97	101	8.33					
Awareness	12	0.96	16	1.32					
Emerging	84	6.73	71	5.86					
Progressing	1,065	85.34	1,024	84.49					
Needs Improvement	0	0	0	0					
Proficient	0	0	0	0					
Above Proficient	0	0	0	0					
Total	1,248		1,212						

^{*}Percentages may not total 100 due to rounding.

Table 5-20. 2009 MCAS-Alt: Performance Level Results—Grade 4

	Content Area							
Performance Level	English La	nguage Arts	Mathe	ematics				
	Number	Percentage*	Number	Percentage*				
Incomplete	51	3.97	132	10.15				
Awareness	7	0.54	7	0.54				
Emerging	150	11.66	72	5.54				
Progressing	1,077	83.75	1,089	83.77				
Needs Improvement	1	0.08	0	0				
Proficient	0	0	0	0				
Advanced	0	0	0	0				
Total	1,286		1300					

^{*}Percentages may not total 100 due to rounding.

Table 5-21. 2009 MCAS-Alt: Performance Level Results—Grade 5

		Content Area							
Performance Level	English Language Arts		Mathematics		Science and Technology/Engineering				
	Number	Percentage*	Number	Percentage*	Number	Percentage*			
Incomplete	91	7.13	97	7.48	78	6.79			
Awareness	17	1.33	17	1.31	10	0.87			
Emerging	82	6.42	65	5.01	106	9.23			
Progressing	1,086	85.04	1,117	86.12	953	83.01			
Needs Improvement	1	0.08	1	0.08	1	0.09			
Proficient	0	0	0	0	0	0			
Advanced	0	0	0	0	0	0			
Total	1,277		1,297		1,148				

^{*}Percentages may not total 100 due to rounding.

Table 5-22. 2009 MCAS-Alt: Performance Level Results—Grade 6

	Content Area							
Performance Level	English La	nguage Arts	Mathe	ematics				
	Number	Percentage*	Number	Percentage*				
Incomplete	73	6.19	78	6.21				
Awareness	20	1.69	22	1.75				
Emerging	75	6.36	57	4.54				
Progressing	1,012	85.76	1,093	87.02				
Needs Improvement	0	0	6	0.48				
Proficient	0	0	0	0				
Advanced	0	0	0	0				
Total	1,180		1,256					

^{*}Percentages may not total 100 due to rounding.

Table 5-23. 2009 MCAS-Alt: Performance Level Results—Grade 7

	Content Area							
Performance Level	English La	anguage Arts	Mathematics					
	Number	Percentage*	Number	Percentage*				
Incomplete	58	4.74	110	8.53				
Awareness	7	0.57	23	1.78				
Emerging	171	13.97	64	4.97				
Progressing	988	80.72	1091	84.64				
Needs Improvement	0	0	1	0.08				
Proficient	0	0	0	0				
Advanced	0	0	0	0				
Total	1,224		1,289					

^{*}Percentages may not total 100 due to rounding.

Table 5-24. 2009 MCAS-Alt: Performance Level Results—Grade 8

	Content Area							
Performance Level	English Language Arts		Mathematics		Science and Technology/Engineering			
	Number	Percentage*	Number	Percentage*	Number	Percentage*		
Incomplete	74	6.91	94	8.1	58	5.63		
Awareness	14	1.31	7	0.6	8	0.78		
Emerging	75	7	71	6.12	120	11.64		
Progressing	908	84.78	985	84.84	843	81.77		
Needs Improvement	0	0	4	0.34	2	0.19		
Proficient	0	0	0	0	0	0		
Advanced	0	0	0	0	0	0		
Total	1,071		1,161		1,031			

^{*}Percentages may not total 100 due to rounding.

Table 5-25. 2009 MCAS-Alt: Performance Level Results—Grade 10 and High School (Grades 9-11)

1 4510 0 20. 2000 111	Content Area									
Performance Level		anguage Arts** de 10 only)		ematics** le 10 only)	Science and Technology/Engineering** (Grades 9–11)					
	Number	Percentage*	Number	Percentage*	Number	Percentage*				
Incomplete	53	6.34	90	10.74	87	10.08				
Awareness	11	1.32	9	1.07	22	2.55				
Emerging	125	14.95	143	17.06	131	15.18				
Progressing	647	77.39	595	71	615	71.26				
Needs Improvement	0	0	1	0.12	8	0.93				
Proficient	0	0	0	0	0	0				
Advanced	0 0		0	0	0	0				
Total	836		838		863					

^{*}Percentages may not total 100 due to rounding.

5.3.2 Scoring Dimension Results

Tables 5-26 through 5-33 display results for the 2009 MCAS-Alt in each of the following scoring dimensions:

- Level of Complexity (section 5.3.2.1)
- Demonstration of Skills and Concepts (section 5.3.2.2)
- Independence (section 5.3.2.3)
- Self-Evaluation (section 5.3.2.4)
- Generalized Performance (section 5.3.2.5)

For information on the determination of score in each dimension, see section 4.2 of the 2007 MCAS Technical Report.

5.3.2.1 Level of Complexity

In 2005, 94.5 percent of all portfolio strands received a Level of Complexity score of 3, signifying that students were addressing learning standards below grade level expectations. A small number (3.3 percent) of students met the learning standards through access skills and received a score of 2. A

^{**}Does not include students in grades 11, 12 or 12+ seeking a Competency Determination

total of 2.2 percent of students received a score of 4 or 5, meaning they were addressing learning standards at or above grade level expectations.

Tables 5-26 through 5-32 show the distributions of Level of Complexity scores on the 2009 MCAS-Alt by strand for each grade in the content area(s) tested. Table 5-33 gives the Level of Complexity score distribution by strand for all tested grades combined.

Table 5-26. 2009 MCAS-Alt:
Statewide Score Distribution for Level of Complexity by Strand—Grade 3

Statewide Score Distribution for Level of Complexity by Strand—Grade 3										
				Content A	Area					
	Englis	h Langua	ge Arts		Matl	hematics				
					= Number					
	Lar	ng = Langu	age	Pattrns	Patterns,	Relations	, and Alg	ebra		
	Read = I	_iterature (Reading)			= Geomet	,			
	Comp = Composition (Writing)				Meas = I	Measurem	ent			
	, , , , ,			Data = Data Analysis, Statistics, and Probability						
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data		
1	22	17		17	10					
2	40	54		54	46					
3	1,161	1,153		1,153	1,131					
4	22	21		21	20					
5	0	0		0	0					

Table 5-27. 2009 MCAS-Alt:
Statewide Score Distribution for Level of Complexity by Strand—Grade 4

Statewide Score Distribution for Level of Complexity by Strand—Grade 4										
				Content	Area					
	Englis	h Langua	ge Arts		Mat	hematics	3			
					n = Number					
	Lar	ng = Langu	age	Pattrns	= Patterns	, Relations	s, and Alo	gebra		
	Read = I	∟iterature (Reading)		Geom	= Geome	try			
	Comp = C	Composition	n (Writing)		Meas =	Measuren	nent			
	-			Data = Data Analysis, Statistics, and Probability						
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data		
1	30	13	4	0				8		
2	33	48	42	41				38		
3	1,191	1,199	1,212	1,235				1,225		
4	26	19	20	23						
5	3	3	2	1				1		

Table 5-28. 2009 MCAS-Alt:
Statewide Score Distribution for Level of Complexity by Strand—Grade 5

	Content Area											
	Englist	English Language Arts Mathematics							Science and			
	Read = L Comp	g = Langu iterature (l o = Compo (Writing)	Reading)	NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability				Technology/Engineering Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineering				
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E
1	41	5		0			5		2	6	1	0
2	28	38		35			36		33	31	26	10
3	1,181	1,204		1,220			1,207		1,002	1,000	886	331
4	21	19		35			41		21	18	21	6
5	4	4		4			4		1	1	1	0

Table 5-29. 2009 MCAS-Alt:

Statewide Score Distribution for Level of Complexity by Strand—Grade 6

				Content /	Area			
	Englis	h Langua	ge Arts		Matl	hematics		
					= Number			
		ıg = Langu		Pattrns	= Patterns,			ebra
	Read = I	∟iterature (Reading)			= Geomet		
	Comp = Composition (Writing)					Measurem		
				Data = Data Analysis, Statistics, and Probability				
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data
1	15	6		3	9			
2	35	50		38	35			
3	1,105	1,101		1,169	1,162			
4	16	16		30	32			
5	6	6		12	12			

Table 5-30. 2009 MCAS-Alt:

Statewide Score Distribution for Level of Complexity by Strand—Grade 7

Statewide 5	core distribution for Level of Complexity by Strand—Grade I										
		·		Content	Area						
	Englis	h Langua	ge Arts		Mat	hematics	;				
					n = Number						
	Lar	ng = Langu	age	Pattrns = Patterns, Relations, and Algebra							
	Read = I	_iterature (Reading)	Geom = Geometry							
	Comp = C	Compositio	n (Writing)		Meas =	Measuren	nent				
				Data = Data Analysis, Statistics, and Probabili							
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data			
1	21	8	9	0				2			
2	28	41	36	41				39			
3	1,154	1,158	1,144	1,225				1,219			
4	14	11	13	17				18			
5	1 0 0 4										

Table 5-31. 2009 MCAS-Alt:

Statewide Score Distribution for Level of Complexity by Strand—Grade 8

						Content	Area							
	English	h Langua	ge Arts			hematics			Science and					
	Read = L	g = Langu iterature (l c = Compo (Writing)	Reading)	NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability						Technology/Engineering Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineering				
Score Point	Lang	Read	Сотр	NmbSn	NmbSn Pattrns Geom Meas Data				Earth	Life	Phys	Tch/E		
1	15	5		3		4			2	7	11	2		
2	21	28		28		27			25	26	19	15		
3	1,019	1,024		1,094		907	890	637	467					
4	10	11		29 26					9	10	8	2		
5	3	2		4 4					1	1	2	3		

Table 5-32. 2009 MCAS: Statewide Score Distribution for Level of Complexity by Strand—Grade 10 and High School (Grades 9–11)

			,	iuna On		Content			,			
		h Langua ade 10 O		/	Mathematic	s (Grade	10 Only)		Science and Technology/Engineering			
	Lan Read = L	ig = Langu Literature (i o = Compo (Writing)	age Reading)	NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability						(Grades 9–11) Bio = Biology Chem = Chemistry Phys = Introductory Physics T/E = Technology/Engineering		
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Bio	Chem	Phys	T/E
1	31	5	3	3	2	2	2	2	52	11	7	4
2	20	33	27	15	13	16	8	10	45	7	8	11
3	777	787	788	671 426 402 444 443				1,836	239	105	179	
4	4	7	8	9 11 13 10 6				45	0	7	0	
5	3	1	0	1	2	1	1	1	4	0	28	0

Table 5-33. 2009 MCAS: Statewide Score Distribution for Level of Complexity by Strand—All Tested Grades Combined

					by our			ntent A								
	Engli	ish Lan	guage		Math	nematics		non A	roa	Scier	nce and	d Techn	ology/L	Enginee	ring	
										Grades	5 and 8			Grades	9–11	
	Lang = Language Read = Literature (Reading) Comp = Composition (Writing) NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability					ebra	Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineering Bio = Biology Chem = Chemistr Phys = Introductory Pr T/E = Technology/Engir					nemistry ctory Phy	/sics			
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E	Bio	Chem	Phys	T/E
1	175	59	16	10	21	6	7	12	4	13	12	2	52	11	7	4
2	205	292	105	248	94	43	44	87	58	57	45	25	45	7	8	11
3	7588	7626	3144	7748 2719 1496 1651 2887			1909	1890	1523	798	1836	239	105	179		
4	113	104	41	168	63	39	51	49	30	28	29	8	45	0	7	0
5	20	16	2	26					2	2	3	3	4	0	28	0

Tables 5-34 and 5-35 show the 2009 MCAS-Alt Composite Level of Complexity score distributions for all tested grades combined, by content area and for combined content areas, respectively.

Table 5-34. 2009 MCAS-Alt: Statewide Score Distribution for Composite Level of Complexity by Content Area—All Tested Grades Combined

ALT = portfolios for students with significant cognitive disabilities GL = portfolios measured against grade level learning standards MIS = not determined due to missing data

	Content Area										
Score Point	English Language	Mathematics		d Technology/ neering							
Foint	Language Arts	Matrierriatics	Grades	High School							
	71710		5 and 8	(Grades 9–11)							
ALT	7,884	8,056	2,057	813							
GL	162	235	48	28							
MIS	76	62	74	22							

Table 5-35. 2009 MCAS-Alt: Statewide Score Distribution for Composite Level of Complexity— All Content Areas Combined

ALT = portfolios for students with significant cognitive disabilities GL = portfolios measured against grade level learning standards MIS = not determined due to missing data

	(Grade Level
Score Point	Grades 3–8 and 10	High School (Grades 9–11) Science and Technology/Engineering
ALT	17,997	813
GL	445	28
MIS	212	22

5.3.2.2 Demonstration of Skills and Concepts

Tables 5-36 through 5-42 give the statewide distributions of all 2009 MCAS-Alt scores for Demonstration of Skills and Concepts in all portfolio strands, by grade. Table 5-43 shows the statewide score distribution by strand for all tested grades combined. Note that the "M" in the score point column of the table below means "missing"; the portfolio strand contained insufficient information to determine a score.

Table 5-36. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 3

				Content .	Area							
	Englisi	h Langua	ge Arts		Matl	nematics						
					= Number							
	Lar	ng = Langu	age	Pattrns	Patterns,	Relations	, and Alg	ebra				
	Read = I	_iterature (Reading)	Geom = Geometry								
	Comp = C	Compositio	n (Writing)		Meas = N	Measurem	ent					
				Data = Da	ta Analysis,	Statistics	, and Pro	bability				
Score Point	Lang	Read	Comp	NmbSn Pattrns Geom Meas I								
М	51	49		59	64							
1	1	1		0	0							
2	5	2		5	8							
3	72	84		76	63							
4	1,094	1,092		1,069	1,062							

Table 5-37. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 4

				Content Area						
	Englisi	h Langua	ge Arts	Mathematics						
				NmbSr	ı = Number	Sense ar	nd Opera	tions		
		ıg = Langu		Pattrns	= Patterns			jebra		
		_iterature (Geom = Geometry						
	Comp = C	Compositio	n (Writing)			Measuren				
•				Data = Da	ta Analysis	, Statistics	s, and Pro	bability		
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data		
M	69	50	62	70				91		
1	0	1	0	0				2		
2	9	11	3	12				4		
3	80	83	90	61				59		
4	1,095	1,124	1,121	1,157				1,133		

Table 5-38. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 5

					Content Area								
	Englisl	h Langua	ge Arts		Mat	hematics			Science and				
	Read = L	g = Langu literature (lo c = Compo (Writing)	Reading)	NmbS Pattrns Data = Da	Technology/Engineering Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineering								
Score Point	Lang	Read	Comp	NmbSn					Earth	Life	Phys	Tch/E	
М	58	41		45			71		59	63	50	21	
1	0	2		1			2		0	0	1	0	
2	12	10		12			14		7	6	6	3	
3	58	86		57			62		57	35	47	13	
4	1,106	1,126		1,179			1,139		934	946	830	310	

Table 5-39. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 6

IOI De	iliolisti a	ionstration of Skins and Concepts by Strand—Grade 6											
				Content A	Area								
	Englis	h Langua	ge Arts		Matl	nematics							
			-		= Number								
	Lar	ng = Langu	age	Pattrns = Patterns, Relations, and Algebra									
	Read = I	_iterature (Reading)	Geom = Geometry									
	Comp = C	Compositio	n (Writing)		Meas = N	Measurem	ent						
	·	•	`	Data = Data Analysis, Statistics, and Probabil									
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data					
M	38	45		44	41								
1	3	2		0	0								
2	3	9		9	10								
3	73	85		89	88								
4	1,045	1,032											

Table 5-40. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 7

				Content Area						
	Englis	h Langua	ge Arts		Mat	hematics	3			
				NmbSn = Number Sense and Operations						
		ig = Langu		Pattrns = Patterns, Relations, and Algebra						
		_iterature (Geom = Geometry Meas = Measurement						
	Comp = C	Compositio	n (Writing)							
				Data = Da	ta Analysis	, Statistics	s, and Pro	obability		
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data		
М	57	61	59	70				61		
1	0	1	0	0				3		
2	13	10	8	14				16		
3	86	85	92	117				82		
4	1,041	1,053	1,034	1,086				1,117		

Table 5-41. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 8

	Tot Demonstration of Okins and Concepts by Ottand—Crade o												
						Content	Area						
	Englis	h Langua	ge Arts		Ма	thematics	3			Scienc	ce and		
					Sn = Numbe				Technology/Engineering				
		ng = Langu	•	Pattrns	s = Patterns	•	, ,	ebra	Earth = Earth Science				
		_iterature (Geom = Geometry Meas = Measurement						Life = Life Science			
	Com	p = Compo	sition	Doto - D			Phys = Physical Sciences						
		(Writing)		Data = D	ata Anaiysi	Tch/E = Technology/Engineering							
Score Point	Lang	Read	Comp	NmbSn					Earth	Life	Phys	Tch/E	
М	42	45		53		48			39	42	35	18	
1	1	1		1		0			0	0	0	0	
2	11	17		12		7			11	10	5	6	
3	77	89		86 81					63	54	46	34	
4	922	913		1,003		1,015			829	821	580	429	

Table 5-42. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—Grade 10 and High School (Grades 9–11)

					una mgm	,		<i></i>					
		sh Languag			Mathema	atics (Grade	10 Only)		Science and Technology/Engineering				
	(G	irade 10 On	ly)		loods On Noon			_		(Grade:	s 9–11)		
		ng = Langua Literature (R			attrns = Patte	nber Sense a erns, Relation om = Geome	s, and Algebr			Bio = E Chem = C	0,		
	Comp =	Composition	(Writing)	Meas = Measurement Data = Data Analysis, Statistics, and Probability					Phys = Introductory Physics T/E = Technology/Engineering				
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Bio	Chem	Phys	T/E	
M	63	63	58	87	62	37	66	41	220	14	11	27	
1	0	1	1	4	2	0	1	1	8	0	0	0	
2	6	11	8	7	3	5	5	2	19	2	3	3	
3	50	74	63	56	34	38	31	28	153	18	8	27	
4	685	679	693	542	351	352	360	388	1,530	212	126	133	

Table 5-43. 2009 MCAS-Alt: Statewide Score Distribution for Demonstration of Skills and Concepts by Strand—All Tested Grades Combined

		Content Area															
	English	Langua	Language Arts Mathematics							Science and Technology/Engineering							
									Grades 5 and 8				Hig	h School ((Grades 9-	·11)	
	Read = L	Lang = Language ead = Literature (Reading) Comp = Composition (Writing) NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability				Ph	Earth = Ear Life = Life lys = Physi = Technol	e Science ical Scienc	es	Phy T/E :	Chem = 0	Biology Chemistry uctory Phys ogy/Engine	sics ering				
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E	Bio	Chem	Phys	T/E	
М	378	354	179	428	167	85	137	193	98	105	85	39	220	14	11	27	
1	5	9	1	6	2	0	3	6	0	0	1	0	8	0	0	0	
2	59	70	19	71	21	12	19	22	18	16	11	9	19	2	3	3	
3	496	586	245	542	185	119	93	169	120	89	93	47	153	18	8	27	
4	6,988	7,019	2,848	7,143	2,515	1,367	1,499	2,638	1,763	1,767	1,410	739	1,530	212	126	133	

5.3.2.3 Independence

Tables 5-44 through 5-50 show the statewide distributions of 2009 MCAS-Alt scores for Independence in all strands, by grade. Table 5-51 displays the statewide score distribution by strand for all tested grades combined.

Table 5-44. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 3

			•	Content Area							
	Englis	h Langua	ge Arts	Mathematics							
					Sn = Number						
		ng = Langu		Pattrns = Patterns, Relations, and Algebra							
		_iterature (l			Geom	Geometry	/				
	Comp = C	Composition	n (Writing)		Meas =	Measureme	nt				
		-		Data = Data Analysis, Statistics, and Probability							
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data			
M	51	49		59	64						
1	3	5		2	6						
2	13	20		31	19						
3	107	120		97	103						
4	1,049 1,034			1,020 1,005							

Table 5-45. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 4

	טוטנו וופוע	Stribution for independence by Strand—Grade 4									
				Content .	Area						
	Englis	h Langua	ge Arts	Mathematics							
				NmbSn = Number Sense and Operations							
		ıg = Langu		Pattrns = Patterns, Relations, and Algebra							
	Read = I	₋iterature (Reading)		Geom	= Geome	try				
	Comp = C	Composition	n (Writing)		Meas =	Measuren	nent				
				Data = Data Analysis, Statistics, and Probabili							
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data			
M	69	50	62	70				91			
1	1	2	3	2				2			
2	14	21	27	15				25			
3	109	122	141	117				125			
4	1,060	1,074	1,043	1,096				1,046			

Table 5-46. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 5

		Content Area												
	English	h Langua	ge Arts		Mat	hematics			Science and					
	Read = L	g = Langu iterature (l o = Compo (Writing)	Reading)	NmbS Pattrns Data = Da	Technology/Engineering Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineering									
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E		
M	58	41		45			71		59	63	50	21		
1	3	1		6			5		3	5	8	2		
2	19	16		28			17		13	9	10	3		
3	70	109		90			114		84	80	87	17		
4	1,084	1,098		1,125	1,125 1,081				898	893	779	304		

Table 5-47. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 6

			-	Content Area							
	Englisi	h Langua	ge Arts	Mathematics							
					= Number						
	Lar	ng = Langu	age	Pattrns	= Patterns,			ebra			
	Read = I	∟iterature (Reading)			= Geomet					
	Comp = C	Composition	n (Writing)		Meas = N	Measurem	ent				
	·	•	, ,,	Data = Data Analysis, Statistics, and Probabili							
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data			
M	38	45		44	41						
1	6	2		9	4						
2	21	21 27		25	22						
3	90	90 104			89						
4	1,007 995			1,065	1,085						

Table 5-48. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 7

	וטמווזפוע	stribution for independence by Strand—Grade 7								
				Content	Area					
	Englis	h Langua	ge Arts	Mathematics						
				NmbSn = Number Sense and Operations						
		ıg = Langu		Pattrns = Patterns, Relations, and Algebra						
	Read = I	₋iterature (Reading)		Geom	= Geome	try			
	Comp = C	Composition	n (Writing)		Meas =	Measuren	nent			
				Data = Data Analysis, Statistics, and Probabili						
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data		
M	57	61	59	70				61		
1	5	3	16	8				9		
2	18	19	31	22				25		
3	114	129	124	1 126 1						
4	1,003	998	963	1,061				1,064		

Table 5-49. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 8

	Englisi	h Langua	ge Arts		Mat	hematics			Science and				
	Read = L	g = Langu iterature (o = Compo (Writing)	Reading)	NmbS Pattrns Data = Da	Technology/Engineering Earth = Earth Science Life = Life Science Phys = Physical Sciences Tch/E = Technology/Engineerin			es					
Score Point	Lang	Read	Comp	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E	
М	42	45		53		48			39	42	35	18	
1	3	3		6		3			1	1	1	0	
2	20	32		21	21 20				24	21	25	7	
3	92	105		103	103 99				88	83	65	49	
4	896	880		972	972 981					780	540	413	

Table 5-50. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—Grade 10 and High School (Grades 9–11)

			muepenu	ence by 3	noor (Grai	ues 3-11)							
						Conter	nt Area						
		sh Languag Frade 10 On				atics (Grade	• •	c	Science and Technology/Engineering (Grades 9–11)				
	Read =	Lang = Language Read = Literature (Reading) Comp = Composition (Writing)			attrns = Patte Ge Mea	erns, Relation om = Geome s = Measurer ysis, Statistic	s, and Algebr try nent	Bio = Biology Chem = Chemistry Phys = Introductory Physics T/E = Technology/Engineering					
Score Point	Lang	Lang Read Comp		NmbSn	Pattrns	Geom	Meas	Data	Bio	Chem	Phys	T/E	
M	63	63	58	87	62	37	66	41	220	14	11	27	
1	4	8	4	6	3	3	2	3	10	1	0	0	
2	16	19	11	17	8	16	7	7	31	5	3	6	
3	88	103	127	76	42	43	55	49	227	26	10	32	
4	633	635	623	510	337	333	333	360	1,442	200	124	125	

Table 5-51. 2009 MCAS-Alt: Statewide Score Distribution for Independence by Strand—All Tested Grades Combined

		independence by Strand—All Tested Grades Combined														
								Content	Area							
	English	Langua	ge Arts		Mai	thematic	S		Science and Technology/Engineering							
	,									Grades 5 and 8				School (Grades 9-	-11)
	Read = L	g = Langua iterature (I o = Compo (Writing)	Reading)	Pattrn	NmbSn = Number Sense and Operations Pattrns = Patterns, Relations, and Algebra Geom = Geometry Meas = Measurement Data = Data Analysis, Statistics, and Probability			Pł	Life = Lif	orth Science e Science sical Science logy/Engine	es	Bio = Biology Chem = Chemistry Phys = Introductory Physics T/E = Technology/Engineering				
Score Point	Lang	Read	Сотр	NmbSn	Pattrns	Geom	Meas	Data	Earth	Life	Phys	Tch/E	Bio	Chem	Phys	T/E
M	378	354	179	428	167	85	137	193	98	105	85	39	220	14	200	27
1	25	24	23	39	13	6	7	14	4	6	9	2	10	1	11	0
2	121	154	69	159	49	36	24	57	37	30	35	10	31	5	0	6
3	670	792	392	715	234	142	169	294	172	163	152	66	227	26	3	32
4	6,732	6,714	2,629	6,849	2,427	1,314	1,414	2,470	1,688	1,673	1,319	717	1,442	200	10	125

5.3.2.4 Self-Evaluation

Tables 5-52 through 5-58 show the 2009 MCAS-Alt score distributions for Self-Evaluation in each content area, by grade. Table 5-59 displays the statewide score distribution by content area for all tested grades combined. Table 5-60 gives the 2009 MCAS-Alt Self-Evaluation score distribution for all content areas combined.

Table 5-52. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 3

101 0011	-Lvaldation by Content A	AICA OIAAC 3							
Score	Content Area								
Point	English Language Arts	Mathematics							
M	21	21							
1	44	24							
2	31	33							
3	25	23							
4	1,127	1,111							

Table 5-53. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 4

Score	Content A	Content Area									
Point	English Language Arts Mathematics										
M	20	22									
1	5	19									
2	61	36									
3	63	25									
4	1,137	1,198									

Table 5-54. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 5

Score	Content Area		
Point	English Language Arts	Mathematics	Science and Technology/ Engineering
M	22	22	17
1	57	21	22
2	16	19	37
3	14	18	39
4	1,168	1,217	1,033

Table 5-55. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 6

Score		
Point	English Language Arts	Mathematics
M	13	19
1	26	19
2	14	20
3	15	12
4	1,112	1,186

Table 5-56. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 7

	ioi con Etalaalion by comoner a ciaaci			
Score	Content Area			
Point	English Language Arts	Mathematics		
M	28	41		
1	7	15		
2	58	10		
3	38	23		
4	1,093	1,200		

Table 5-57. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 8

	i i i i i i i i i i i i i i i i i i i			
Score	Content Area			
Point	English Language Arts	Mathematics	Science and Technology/ Engineering	
M	25	32	24	
1	27	32	28	
2	17	16	32	
3	19	19	30	
4	983	1,062	917	

Table 5-58. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—Grade 10 and High School (Grades 9–11)

101 3611-	for Self-Evaluation by Content Area—Grade to and riigh School (Grades 9-11)			
	Content Area			
Score Point	English Language Arts (Grade 10 Only)	Mathematics (Grade 10 Only)	Science and Technology/ Engineering (Grades 9–11)	
M	29	28	35	
1	7	5	31	
2	50	22	29	
3	31	31	34	
4	719	752	734	

Table 5-59. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation by Content Area—All Tested Grades Combined

	Content Area			
Score	English Language Arts		Science and Technology/	
Point		Mathematics	Engineering	
			Grades 5 & 8	Grades 9–11
M	158	185	41	35
1	173	135	50	31
2	247	156	69	29
3	205	151	69	34
4	7,339	7,726	1,950	734

Table 5-60. 2009 MCAS-Alt: Statewide Score Distribution for Self-Evaluation—All Content Areas Combined

	Grade Level		
Score Point	Grades 3–8, and 10	High School (Grades 9–11) End-of-Course Science and Technology/Engineering	
M	384	35	
1	358	31	
2	472	29	
3	425	34	
4	17,015	734	

5.3.2.5 Generalized Performance

Tables 5-61 through 5-67 show the 2009 MCAS-Alt score distributions for Generalized Performance for each content area, by grade. Table 5-68 shows the statewide score distribution by content area for all tested grades combined, and Table 5-69 displays the statewide score distribution for all content areas combined.

Table 5-61. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 3

or contrained in contrained by contrained contrained			
Score	Content Area		
Point	English Language Arts	Mathematics	
1	53	55	
2	127	100	
3	1,068	1,057	

Table 5-62. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 4

Score	Content Area		
Point	English Language Arts Mathemat		
1	42	54	
2	63	114	
3	1,181	1,132	

Table 5-63. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 5

Score		Content Area	
Point	English Language Arts	Mathematics	Science and Technology/Engineering
1	52	48	22
2	154	129	40
3	1,071	1,120	1,086

Table 5-64. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 6

Score	Content Area		
Point	English Language Arts	Mathematics	
1	61	67	
2	142	122	
3	977	1,067	

Table 5-65. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 7

or contrained in contrained by contrainer, and container.			
Score	Content Area		
Point	English Language Arts Mathematics		
1	58	69	
2	81	138	
3	1,085	1,082	

Table 5-66. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 8

	ioi continuiza i circiniante al contenti i ca circula							
Sooro		Content Area						
Score Point	English Language Arts Mathe		Science and Technology/Engineering					
1	53	44	35					
2	109	103	39					
3	909	1,014	957					

Table 5-67. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—Grade 10 and High School (Grades 9–11)

		Content Area	
Score Point	English Language Arts (Grade 10 Only)	Mathematics (Grade 10 Only)	Science and Technology/Engineering (Grades 9–11)
1	32	28	43
2	54	52	36
3	750	758	784

Table 5-68. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance by Content Area—All Tested Grades Combined

		Content Area					
Score			Science and Tec	hnology/Engineering			
Point	Point English Language Arts Mathematics		Grades 5 and 8	Grades 9–11			
1	351	365	57	43			
2	730	758	79	36			
3	7,041	7,230	2,043	784			

Table 5-69. 2009 MCAS-Alt: Statewide Score Distribution for Generalized Performance—All Content Areas Combined

	Grade Level				
Score Point	Cradon 2 0	High School (Grades 9–11)			
	Grades 3–8 and 10	End-of-Course Science and			
		Technology/Engineering			
1	773	43			
2	1,567	36			
3	16,314	784			

5.3.3 MCAS-Alt Participation Data

MCAS-Alt student portfolios were measured against one of two sets of standards—alternate achievement standards or grade level achievement standards—based on the following criteria:

- The level of complexity of the evidence in the portfolio
- Whether it was determined that the student was working at or near grade level expectations, somewhat below grade level expectations, or well below grade level expectations (pursuant to U.S. Department of Education Title I regulations)

Tables 5-70 through 5-76 display statewide participation data for the 2009 MCAS-Alt disaggregated by method of measurement (i.e., the numbers and percentages of MCAS-Alt portfolios measured on grade level standards and on alternate achievement standards).

Table 5-70. 2009 MCAS-Alt: Participation Results—Grade 3

Assessment Format and	Content Area					
Assessment Format and Achievement Standard Measured	English La	nguage Arts	Mathe	matics		
Achievement Standard Weasured	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on						
grade level achievement standards	69,406	98.23	69,559	98.29		
MCAS-Alt, measured on						
grade level achievement standards	26	0.04	26	0.04		
MCAS-Alt, measured on						
alternate achievement standards	1,216	1.72	1,179	1.67		
MCAS-Alt, achievement standards level						
not determined	6	0.01	7	0.01		
Total	70,654		70,771			

^{*}Percentages may not total 100 due to rounding.

Table 5-71. 2009 MCAS-Alt: Participation Results—Grade 4

Assessment Format and	Content Area					
Assessment Format and Achievement Standard Measured	English Lai	nguage Arts	Mathematics			
Achievement Standard Measured	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on						
grade level achievement standards	69,164	98.17	69,388	98.16		
MCAS-Alt, measured on						
grade level achievement standards	33	0.05	30	0.04		
MCAS-Alt, measured on						
alternate achievement standards	1,242	1.76	1,267	1.79		
MCAS-Alt, achievement standards level						
not determined	11	0.02	3	0		
Total	70,450		70,688			

^{*}Percentages may not total 100 due to rounding.

Table 5-72. 2009 MCAS-Alt: Participation Results—Grade 5

Assessment Format and		Content Area						
Achievement Standard Measured	English Language Arts		Mathematics		Science and Technology/Engineering			
livieasureu	Number	Percentage*	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on grade level achievement standards	70,362	98.22	70,476	98.19	70,518	98.4		
MCAS-Alt, measured on grade	70,002	JO.22	70,470	30.10	70,010	30.4		
level achievement standards	31	0.04	48	0.07	30	0.04		
MCAS-Alt, measured on alternate achievement								
standards	1,237	1.73	1,242	1.73	1,081	1.51		
MCAS-Alt, achievement								
standards level not determined	9	0.01	7	0.01	37	0.05		
Total	71,639		71,773		71,666			

^{*}Percentages may not total 100 due to rounding.

Table 5-73. 2009 MCAS-Alt: Participation Results—Grade 6

Tuble of the 2000 morte full i unicipation recourse of the control						
Assessment Format and	Content Area					
Achievement Standard Measured	English Laı	nguage Arts	Mathematics			
Achievement Standard Weasured	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on						
grade level achievement standards	69,799	98.34	69,814	98.23		
MCAS-Alt, measured on						
grade level achievement standards	28	0.04	49	0.07		
MCAS-Alt, measured on						
alternate achievement standards	1,148	1.62	1,197	1.68		
MCAS-Alt, achievement standards level						
not determined	4	0.01	10	0.01		
Total	70,979		71,070			

^{*}Percentages may not total 100 due to rounding.

Table 5-74. 2009 MCAS-Alt: Participation Results—Grade 7

Assessment Format and	Content Area					
Assessment Format and Achievement Standard Measured	English Lar	nguage Arts	Mathematics			
Achievement Standard Measured	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on						
grade level achievement standards	70,456	98.29	70,669	98.21		
MCAS-Alt, measured on						
grade level achievement standards	16	0.02	24	0.03		
MCAS-Alt, measured on						
alternate achievement standards	1,178	1.64	1,255	1.74		
MCAS-Alt, achievement standards level						
not determined	30	0.04	10	0.01		
Total	71,680		71,958			

^{*}Percentages may not total 100 due to rounding.

Table 5-75. 2009 MCAS-Alt: Participation Results—Grade 8

Assessment Format and		Content Area						
Achievement Standard Measured	English Language Arts		Mathematics		Science and Technology/Engineering			
Measured	Number	Percentage*	Number	Percentage*	Number	Percentage*		
Standard MCAS test, measured on grade level achievement								
standards	72,085	98.54	72,029	98.41	71,967	98.59		
MCAS-Alt, measured on grade level achievement standards	16	0.02	38	0.05	18	0.02		
MCAS-Alt, measured on alternate achievement standards	1,051	1.44	1,114	1.52	976	1.34		
MCAS-Alt, achievement standards level not determined	4	0.01	9	0.01	37	0.05		
Total	73,156		73,190		72,998			

^{*}Percentages may not total 100 due to rounding.

Table 5-76. 2009 MCAS-Alt: Participation Results—Grade 10 and High School (Grades 9-11)

Tubic 6 7 61 2000 in 67 to 7 titl 1 unticipation 1 toodis				ana mgn conc		/
			Cont	ent Area		
Assessment Format and Achievement Standard Measured	English Language Arts (Grade 10 Only)		Mathematics (Grade 10 Only)		Science and Technology/Engineering (Grades 9–11)	
	Number	Percentage*	Number	Percentage*	Number	Percentage*
Standard MCAS test, measured						
on grade level achievement						
standards	69,587	98.81	69,392	98.8	75,245	98.86
MCAS-Alt, measured on grade	40	0.00	00	2.22	00	0.04
level achievement standards	12	0.02	20	0.03	28	0.04
MCAS-Alt, measured on alternate achievement						
standards	814	1.16	804	1.14	815	1.07
MCAS-Alt, achievement			·			
standards level not determined	12	0.02	16	0.02	22	0.03
Total	70,425		70,232		76,110	

^{*}Percentages may not total 100 due to rounding.

5.4 Reports of Test Results

In addition to the statewide results reported in *Spring 2009 MCAS Tests: Summary of State Results* (www.doe.mass.edu/mcas/2009/results/summary.pdf), results for the 2009 MCAS tests were provided to individual students and their parents/guardians, schools, and districts through the following reports:

- Parent/Guardian Report
- School Report
- District Report
- Test Item Analysis Reports
 - School Test Item Analysis Roster
 - School Test Item Analysis Report Summary
 - District Test Item Analysis Report Summary

Each report was designed to disseminate information applicable only to the receiving party. Information to assist with interpreting the results was provided within each report; these reports are available at www.doe.mass.edu/mcas/results.html.

Chapter 6. Statistical and Psychometric Summaries

Both qualitative and quantitative analyses are conducted to ensure that MCAS questions meet the standards presented in *Standards for Educational and Psychological Testing* (American Educational Research Association, American Psychological Association, & National Council on Measurement in Education, 1999) and *Code of Fair Testing Practices in Education* (Joint Committee on Testing Practices, 1988). Three categories of statistical evaluations are performed to ensure that MCAS questions meet these standards:

- Difficulty indices
- Discrimination (item to total score correlation)
- Subgroup differences in item performance (differential item functioning, or DIF)

The results of these evaluations for the 2009 MCAS administration are presented in the related sections of this chapter. Additional information and explanation about statistical evaluation, including guidance regarding comparisons among data and an explanation of DIF procedure, is presented in the 2007 MCAS Technical Report.

6.1 Item Difficulty and Discrimination

The difficulty of MCAS items was measured by averaging the proportion of points received for an item across all students to whom the item was administered.

Multiple-choice and short-answer items (i.e., dichotomous items) were scored "correct" or "incorrect"; for these items, the difficulty index was simply the proportion of students who answered correctly.³

Open-response items and English language arts (ELA) compositions (i.e., polytomous items) received scores within ranges specific to the item type.

- Open-response items were scored 0–4.
- ELA compositions were scored by two different scorers, each of whom assigned a separate score for each ELA composition scoring dimension.
 - One score for standard English conventions (1–4 points)
 - One score for topic development (1–6 points)

The two scores were combined (summed) for each dimension, resulting in a final standard English conventions score in the range of 2–8 and a final topic development score in the range of 2–12.

For MCAS polytomous items, the item to total score correlation used as the discrimination index was the Pearson product-moment correlation; for MCAS dichotomous items, the point-biserial correlation was used.

-

³ Short-answer items are used in mathematic s tests only.

6.1.1 Summary of Item Analysis Results

Summary statistics of the difficulty and discrimination indices for each item are provided in Tables 6-1 through 6-7. In general, the 2009 MCAS item difficulty and discrimination indices were within acceptable and expected ranges.

Multiple-choice items generally had a lower level of difficulty and less discrimination than constructed-response items. The lower difficulty of multiple-choice items is expected due to the opportunity of guessing correctly, and the higher discrimination of constructed-response items is expected due to the correlation of a larger range of item score points with total test scores.

Table 6-1. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—English Language Arts, Grades 3–8 and 10

		Item Type				
			пенттуре	Onen Deenenee		
				Open-Response		
0	Otatiatian	A 11		and Writing		
Grade Level	Statistics	All	Multiple-Choice	Prompt		
	Difficulty	0.76 (0.13)	0.79 (0.10)	0.49 (0.14)		
3	Discrimination	0.43 (0.07)	0.42 (0.07)	0.53 (0.08)		
	Number of Items	78	72	6		
	Difficulty	0.75 (0.12)	0.78 (0.08)	0.50 (0.03)		
4	Discrimination	0.42 (0.09)	0.39 (0.07)	0.59 (0.04)		
	Number of Items	82	72	10		
	Difficulty	0.75 (0.11)	0.78 (0.08)	0.54 (0.05)		
5	Discrimination	0.42 (0.08)	0.40 (0.06)	0.54 (0.06)		
	Number of Items	82	72	10		
	Difficulty	0.75 (0.12)	0.77 (0.10)	0.58 (0.03)		
6	Discrimination	0.42 (0.10)	0.40 (0.08)	0.61 (0.04)		
	Number of Items	82	72	10		
	Difficulty	0.76 (0.10)	0.78 (0.08)	0.59 (0.04)		
7	Discrimination	0.41 (0.11)	0.37 (0.07)	0.65 (0.04)		
	Number of Items	82	72	10		
	Difficulty	0.76 (0.10)	0.78 (0.09)	0.61 (0.05)		
8	Discrimination	0.44 (0.09)	0.42 (0.07)	0.63 (0.04)		
	Number of Items	82	72	10		
	Difficulty	0.74 (0.10)	0.75 (0.10)	0.64 (0.04)		
10	Discrimination	0.41 (0.12)	0.37 (0.07)	0.67 (0.03)		
	Number of Items	152	132	20		

Numbers in parentheses denote standard deviations.

Table 6-2. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Mathematics, Grades 3–8 and 10

		ypoo mamoman	Item Type	
			nom type	Short-Answer
				and Open-
Grade Level	Statistics	All	Multiple-Choice	Response
	Difficulty	0.77 (0.10)	0.78 (0.10)	0.74 (0.09)
3	Discrimination	0.43 (0.08)	0.42 (0.07)	0.46 (0.10)
	Number of Items	70	50	20
	Difficulty	0.72 (0.13)	0.74 (0.13)	0.67 (0.10)
4	Discrimination	0.43 (0.10)	0.40 (0.07)	0.52 (0.10)
	Number of Items	78	58	20
	Difficulty	0.71 (0.12)	0.73 (0.11)	0.64 (0.12)
5	Discrimination	0.47 (0.10)	0.44 (0.08)	0.56 (0.10)
	Number of Items	78	58	20
	Difficulty	0.74 (0.10)	0.76 (0.09)	0.66 (0.09)
6	Discrimination	0.48 (0.10)	0.45 (0.08)	0.56 (0.12)
	Number of Items	78	58	20
	Difficulty	0.70 (0.11)	0.72 (0.10)	0.66 (0.10)
7	Discrimination	0.50 (0.09)	0.46 (0.05)	0.60 (0.11)
	Number of Items	78	58	20
	Difficulty	0.64 (0.14)	0.66 (0.14)	0.60 (0.15)
8	Discrimination	0.49 (0.11)	0.44 (0.08)	0.61 (0.11)
	Number of Items	78	58	20
	Difficulty	0.57 (0.12)	0.57 (0.12)	0.58 (0.13)
10	Discrimination	0.47 (0.13)	0.42 (0.09)	0.65 (0.13)
	Number of Items	122	96	26

Numbers in parentheses denote standard deviations.

Table 6-3. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Science and Technology/Engineering, Grades 5 and 8

	it itelli Types—ocie	fice and recimon	ogy/⊑niginieering, ord	aues s anu o
			Item Type	
Grade Level	Statistics	All	Multiple-Choice	Open-Response
	Difficulty	0.70 (0.14)	0.73 (0.12)	0.51 (0.12)
5	Discrimination	0.36 (0.08)	0.35 (0.06)	0.49 (0.06)
	Number of Items	78	68	10
	Difficulty	0.64 (0.14)	0.66 (0.14)	0.51 (0.08)
8	Discrimination	0.40 (0.10)	0.37 (0.07)	0.59 (0.07)
	Number of Items	78	68	10

Numbers in parentheses denote standard deviations.

Table 6-4. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Biology, High School (Grades 9–11)

OI DINCICIO	i itelii i ypes—bio	iogy, riigii ociiooi (c	114463 3-11 <i>)</i>
		Item Type	
Statistics	All	Multiple-Choice	Open-Response
Difficulty	0.64 (0.14)	0.66 (0.12)	0.46 (0.17)
Discrimination	0.43 (0.10)	0.40 (0.07)	0.64 (0.03)
Number of Items	45	40	5

Numbers in parentheses denote standard deviations.

Table 6-5. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Chemistry, High School (Grades 9–11)

		Item Type	
Statistics	All	Multiple-Choice	Open-Response
Difficulty	0.56 (0.14)	0.57 (0.14)	0.46 (0.10)
Discrimination	0.45 (0.13)	0.42 (0.10)	0.69 (0.03)
Number of Items	45	40	5

Numbers in parentheses denote standard deviations.

Table 6-6. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Introductory Physics, High School (Grades 9–11)

			,
		Item Type	
Statistics	All	Multiple-Choice	Open-Response
Difficulty	0.60 (0.14)	0.62 (0.13)	0.46 (0.05)
Discrimination	0.41 (0.13)	0.38 (0.09)	0.68 (0.05)
Number of Items	45	40	5

Numbers in parentheses denote standard deviations.

Table 6-7. 2009 MCAS: Average Difficulty and Discrimination of Different Item Types—Technology/Engineering, High School (Grades 9–11)

- Dillordine rediii 1 j	tee recimiency,	gg,g c	***************************************
		Item Type	
Statistics	All	Multiple-Choice	Open-Response
Difficulty	0.63 (0.16)	0.65 (0.16)	0.49 (0.12)
Discrimination	0.33 (0.11)	0.30 (0.09)	0.53 (0.06)
Number of Items	45	40	5

Numbers in parentheses denote standard deviations.

6.1.2 Differential Item Functioning (DIF)

The DIF procedure (Dorans & Kulick, 1986) determines the difference in item performance for groups of students matched for achievement on the total test by

- calculating average item performance for students at every total score,
- calculating an overall average,
- weighting the total score distribution so it is the same for the two groups.

For the 2009 MCAS tests, three subgroups were evaluated for DIF:

- Male/female
- White/African American
- White/Hispanic

Other race/ethnicity groups (e.g., Asian) were not analyzed using DIF procedures because limited sample sizes would have inflated the type I error rates.

Computed DIF indices theoretically range from -1.00 to 1.00 for multiple-choice items; those for constructed-response items (short-answer, open-response, and ELA composition writing prompts) are adjusted to the same scale. Dorans and Holland (1993) suggest that index values between -0.05 and 0.05, dubbed "Type A," should be considered negligible. Most 2009 MCAS items fell within

this range. The authors further suggest that any item with a value between -0.10 and -0.05 or between 0.05 and 0.10 ("Type B") could be considered low DIF, but should be inspected to ensure that no possible effect is overlooked. Finally, they recommend that any items with a value less than -.10 or greater than 0.10 ("Type C") should be considered high DIF and be carefully examined. Each 2009 MCAS test item was categorized according to these guidelines.

6.1.2.1 How DIF Statistics Are Used

Item statistics for new items are reviewed by the Assessment Development Committees (ADCs) and by the Bias/Sensitivity Committee. ADCs convene by content and grade to review the item statistics during their summer and fall meetings. They are given an overview of how to use the item statistics and which scores should raise red flags. Using the following item statistics—item difficulty, item discrimination, and differential item functioning—the ADCs sort new items into the following categories:

- Approved for use as a common item in subsequent test administrations;
- Edited and sent back for field-testing; and
- Rejected.

The Bias/Sensitivity Committee reviews items after they have been reviewed by the ADCs. If an item is rejected on the ADC, it is not presented to the Bias/Sensitivity Committee for review. In all cases, all committee recommendations regarding items must be reviewed and approved by the ESE.

6.1.2.2 DIF Analysis by Test Form and Item Type

Tables 6-8 through 6-27 show the number of items classified into each DIF category by test form and item type, i.e., multiple-choice (MC) or constructed-response (CR)—in English language arts, constructed-response includes open-response items at all grades and ELA composition writing prompts at grades 4, 7, and 10; in mathematics, constructed-response includes short-answer and open-response items at all grades.

The counts of high DIF across forms are as follows:

- Male versus female
 - 9 forms with 1 item high DIF
 - 3 forms with 2 items high DIF
 - 1 forms with 3 or more items high DIF
- White versus African American
 - 24 forms with 1 item high DIF
 - 4 forms with 2 items high DIF
 - 7 forms with 3 or more items high DIF
- White versus Hispanic
 - 19 forms with 1 item high DIF
 - 3 forms with 2 items high DIF
 - 4 forms with 3 or more items high DIF

Table 6-8. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 3

A = negligible DIF, B = low DIF, C = high DIF

			٨	/lale/							Wr	ite/	Afric			eric	an				W	hite/			ic		
				DIF	Cla	SS							DIF	Cla	รร							DIF	Cla	ss			
		All			МС			CR)		ΑII		ı	ИС			CR			All		ı	ИС			CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	41	1	0	39	1	0	2	0	0	40	2	0	38	2	0	2	0	0	40	2	0	38	2	0	2	0	0
01	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0	6	3	0	5	3	0	1	0	0
02	9	0	0	8	0	0	1	0	0	9	0	0	8	0	0	1	0	0	7	1	1	6	1	1	1	0	0
13	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0	8	0	1	7	0	1	1	0	0
14	9	0	0	8	0	0	1	0	0	7	1	1	6	1	1	1	0	0	9	0	0	8	0	0	1	0	0

Table 6-9. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 4 $A = negligible \ DIF, \ B = low \ DIF, \ C = high \ DIF$

								9		,,,,			, , , , ,				<i>.</i> 9										
			Λ	/ale	Fen	nale	è				Wr	ite/	'Afric	an .	Ame	eric	an				W	hite/i	Hisp	oan	ic		
				DIF	Cla	ss							DIF	Cla	ss							DIF	Cla	SS			
		All		ı	МС			CR	1		AII		ı	ИС			CR	1		All		I	ИС			CR	
Form	Α	В	O	Α	В	С	Α	В	C	Α	В	C	Α	В	С	Α	В	С	Α	В	C	А	В	O	Α	В	\sim
Number	τ.	ם	٥	τ	D	٥	τ	ם	٥	τ	D	٥	τ	ם	C	τ	D	C	τ	D	٥	τ	D	٥	τ	D	C
Common	33	7	0	29	7	0	4	0	0	32	8	0	28	8	0	4	0	0	32	8	0	28	8	0	4	0	0
01	7	2	0	6	2	0	1	0	0	8	1	0	7	1	0	1	0	0	4	4	1	3	4	1	1	0	0
03	4	1	0	3	1	0	1	0	0	4	1	0	3	1	0	1	0	0	3	2	0	3	1	0	0	1	0
05	8	1	0	7	1	0	1	0	0	6	2	1	6	1	1	0	1	0	8	1	0	7	1	0	1	0	0
08	3	1	1	2	1	1	1	0	0	2	2	1	1	2	1	1	0	0	4	1	0	3	1	0	1	0	0
10	9	0	0	8	0	0	1	0	0	7	1	1	6	1	1	1	0	0	4	4	1	3	4	1	1	0	0
12	1	3	1	0	3	1	1	0	0	3	2	0	2	2	0	1	0	0	4	1	0	3	1	0	1	0	0

Table 6-10. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 5

A = negligible DIF, B = low DIF, C = high DIF

			٨	/lale/	Fen	nale)		Ŭ		Wr	ite/	'Afric	an i	Ате	eric	an				W	hite/i	Hisp	oan	ic		
				DIF	Cla	SS							DIF	Cla	SS							DIF					
		ΑII			ИC			CR)		All			ИC			CR			All		I	ИС			CR	
Form Number	Α	В	С	Α	В	C	Α	В	O	Α	В	С	Α	В	O	Α	В	О	Α	В	O	Α	В	O	Α	В	O
Common	37	3	0	33	3	0	4	0	0	34	6	0	30	6	0	4	0	0	35	5	0	31	5	0	4	0	0
01	9	0	0	8	0	0	1	0	0	7	2	0	6	2	0	1	0	0	9	0	0	8	0	0	1	0	0
03	5	0	0	4	0	0	1	0	0	4	1	0	3	1	0	1	0	0	5	0	0	4	0	0	1	0	0
05	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0	8	1	0	7	1	0	1	0	0
08	4	1	0	3	1	0	1	0	0	4	1	0	3	1	0	1	0	0	4	1	0	3	1	0	1	0	0
10	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0	7	2	0	6	2	0	1	0	0
12	2	3	0	1	3	0	1	0	0	5	0	0	4	0	0	1	0	0	5	0	0	4	0	0	1	0	0

Table 6-11. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 6

A = negligible DIF, B = low DIF, C = high DIF

			Λ	/ale	Fer	nale)		J		Wr	ite/	Afric	an .	Ame	eric	an				W	hite/i	Hisp	oan	ic		
				DIF	Cla	SS							DIF	Cla	SS							DIF	Cla	SS			
		All			MC			CR)		All		I	ИC			CR	1		All		I	ИС			CR	
Form Number	Α	В	C	Α	В	O	A	В	C	Α	В	C	Α	В	O	Α	В	C	Α	В	С	Α	В	С	Α	В	С
Common	38	2	0	34	2	0	4	0	0	35	5	0	31	5	0	4	0	0	35	5	0	31	5	0	4	0	0
01	8	1	0	8	0	0	0	1	0	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0
03	4	1	0	3	1	0	1	0	0	5	0	0	4	0	0	1	0	0	4	1	0	3	1	0	1	0	0
05	8	1	0	7	1	0	1	0	0	6	3	0	5	3	0	1	0	0	7	1	1	6	1	1	1	0	0
80	4	1	0	3	1	0	1	0	0	4	1	0	3	1	0	1	0	0	4	0	1	3	0	1	1	0	0
10	7	2	0	6	2	0	1	0	0	5	4	0	4	4	0	1	0	0	7	1	1	6	1	1	1	0	0
12	4	1	0	3	1	0	1	0	0	3	1	1	2	1	1	1	0	0	3	2	0	2	2	0	1	0	0

Table 6-12. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 7 A = negligible DIF, B = low DIF, C = high DIF

			Λ	/lale	Fen	nale)				Wł	nite/	'Afric	an i	Ате	eric	an				W	hite/	Hisp	oan	ic		
				DIF	Cla	SS							DIF	Cla	SS							DIF					
		ΑII			ИC			CR)		All			ИC			CR			All			ИС			CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	32	6	2	29	5	2	3	1	0	32	8	0	28	8	0	4	0	0	34	6	0	30	6	0	4	0	0
01	9	0	0	8	0	0	1	0	0	9	0	0	8	0	0	1	0	0	8	1	0	7	1	0	1	0	0
03	4	1	0	3	1	0	1	0	0	3	2	0	3	1	0	0	1	0	4	1	0	3	1	0	1	0	0
05	8	1	0	7	1	0	1	0	0	5	თ	1	4	3	1	1	0	0	7	2	0	6	2	0	1	0	0
08	5	0	0	4	0	0	1	0	0	2	თ	0	1	3	0	1	0	0	4	1	0	3	1	0	1	0	0
10	7	2	0	6	2	0	1	0	0	5	1	ფ	4	1	3	1	0	0	6	3	0	5	3	0	1	0	0
12	5	0	0	4	0	0	1	0	0	5	0	0	4	0	0	1	0	0	5	0	0	4	0	0	1	0	0

Table 6-13. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 8

A = negligible DIF, B = low DIF, C = high DIF

						_					,,				, -												
			Λ	/lale	/Fer	nale)				Wŀ	ite/	'Afric	an i	Ame	eric	an				W	hite/i	Hisp	oan	ic		
				DIF	Cla	ss							DIF	Cla	ss							DIF	Cla	SS			
		All			МС			CR			All			ИС			CR			All		I	ИС			CR	
Form	Α	В	O	Α	В	С	Α	В	С	Α	В	C	Α	В	С	Α	В	С	Α	В	C	А	В	S	Α	В	С
Number		Ь	C	А	Ь		А	Ь		А	Ь			Ь		A	Ь	C	А	Ь	C	А	Ь	C		Ь	C
Common	32	7	1	30	5	1	2	2	0	32	5	3	28	5	3	4	0	0	33	4	3	29	4	3	4	0	0
01	7	2	0	6	2	0	1	0	0	9	0	0	8	0	0	1	0	0	6	3	0	5	3	0	1	0	0
03	4	1	0	4	0	0	0	1	0	4	1	0	3	1	0	1	0	0	3	2	0	2	2	0	1	0	0
05	6	2	1	6	1	1	0	1	0	6	2	1	5	2	1	1	0	0	8	1	0	7	1	0	1	0	0
08	4	1	0	4	0	0	0	1	0	3	1	1	2	1	1	1	0	0	2	3	0	1	3	0	1	0	0
10	8	1	0	8	0	0	0	1	0	7	2	0	6	2	0	1	0	0	8	1	0	7	1	0	1	0	0
12	5	0	0	4	0	0	1	0	0	3	1	1	2	1	1	1	0	0	3	2	0	2	2	0	1	0	0

Table 6-14. 2009 MCAS: DIF Analysis by Form—English Language Arts Grade 10

A = negligible DIF, B = low DIF, C = high DIFMale/Female White/African American White/Hispanic DIF Class DIF Class DIF Class ΑII МС CR All МС CR All МС CR Form В В В Α В С Α С Α В С Α В С Α В С Α С Α В С Α С Α В С Number Common 0 2 6 4 0 2 0 8 2 2 1 8 4 0 2 0 1 5 1 6 5 1 2 5 6 2 2 3 2 0 0 2 0

Table 6-15. 2009 MCAS: 08 DIF Analysis by Form—Mathematics Grade 3

6 5 1 2 0 0

3 4 5 2 0 0

2 0

0 0

8 4 2

6 7 1

8 5 1

6 4 2 2 0 0

4 7 1 2 0 0

6 5 1 2 0 0

A = nealiaible DIF, B = low DIF, C = high DIF

								icg	iigib	ום טו								ווט									
			٨	/lale/	/Fer	nale	Э				Wr		Afric			eric	an				W	hite/i	Hisp	oani	ic		
				DIF	Cla	ss							DIF	Cla	SS							DIF	Cla	SS			
		All		ı	ИС			CR			All		ı	ИС			CR)		All		I	ИС			CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	33	2	0	23	2	0	10	0	0	30	5	0	23	2	0	7	3	0	32	3	0	24	1	0	8	2	0
1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0
2	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
3	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
4	4	0	0	3	0	0	1	0	0	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0
5	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
6	4	0	0	3	0	0	1	0	0	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0
7	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
8	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0
9	3	0	0	2	0	0	1	0	0	2	1	0	2	0	0	0	1	0	3	0	0	2	0	0	1	0	0
10	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0
11	3	0	0	2	0	0	1	0	0	2	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	0	0
12	2	1	0	2	1	0	0	0	0	1	1	1	1	1	1	0	0	0	3	0	0	3	0	0	0	0	0

14 0 0 12 0

11 3 0

11 1 2

0 2

0 2

9 3

9 1 2 2 0 0

0 0

0 0 12 2 0

8 5 1

5 4 5

Table 6-16. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 4 A = negligible DIF, B = low DIF, C = high DIF

			I	Male	-	ma lass	le	neg	·· <i>g</i> ··				/Afri	car		nerio					И	/hite					
		AII			<u>ис</u>	ass	,	CR			All			<u>ис</u>	ass	,	CR			AII			MC	ass		CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	36	3	0	28	1	0	8	2	0	35	2	2	25	2	2	10	0	0	35	3	1	25	3	1	10	0	0
1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0
2	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0
3	2	0	0	1	0	0	1	0	0	1	1	0	1	0	0	0	1	0	2	0	0	1	0	0	1	0	0
4	4	0	0	3	0	0	1	0	0	3	1	0	3	0	0	0	1	0	3	0	1	3	0	0	0	0	1
5	2	0	0	1	0	0	1	0	0	1	1	0	1	0	0	0	1	0	2	0	0	1	0	0	1	0	0
6	3	0	1	2	0	1	1	0	0	3	0	1	2	0	1	1	0	0	3	1	0	2	1	0	1	0	0
7	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0
8	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
9	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0
10	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0
11	2	0	0	1	0	0	1	0	0	1	1	0	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
12	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0
13	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0	2	0	1	2	0	1	0	0	0
14	2	1	0	2	1	0	0	0	0	1	1	1	1	1	1	0	0	0	3	0	0	3	0	0	0	0	0
15	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0	1	2	0	1	2	0	0	0	0

Table 6-17. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 5 $A = negligible\ DIF,\ B = low\ DIF,\ C = high\ DIF$

				Male			le		· J · · · ·		Ŵł	ite/	Afric				an					hite/l			ic		
				_	- CI	ass							DIF		SS							DIF	Cla	SS			
		All		ı	ИC			CR			All		ı	ИC			CR)		All		- 1	ИC			CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	C	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	36	3	0	26	3	0	10	0	0	33	6	0	25	4	0	8	2	0	37	2	0	28	1	0	0	1	0
1	4	0	0	3	0	0	1	0	0	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0
2	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
3	5	0	0	4	0	0	1	0	0	4	1	0	4	0	0	0	1	0	5	0	0	4	0	0	1	0	0
4	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
5	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	2	0	0	1	0	0	1	0	0
6	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0	3	1	0	3	0	0	0	1	0
7	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0
8	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0	3	1	0	3	0	0	0	1	0
9	2	0	0	1	0	0	1	0	0	1	1	0	1	0	0	0	1	0	2	0	0	1	0	0	1	0	0
10	1	2	0	1	2	0	0	0	0	1	2	0	1	2	0	0	0	0	3	0	0	3	0	0	0	0	0
11	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	2	0	0	1	0	0	1	0	0
12	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0

Table 6-18. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 6

A = negligible DIF, B = low DIF, C = high DIFMale/Female White/African American White/Hispanic DIF Class **DIF Class** DIF Class CR CR ΑII MC All MC CR ΑII MC Form Α В С Α В С Α В C Α В С Α В C Α В С Α В С Α В С Α В С Number Common 0 0 0 0 1 l 0 0 0 0 0 0 0 0

Table 6-19. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 7

3 0

0 0

3 0 0

0 0

0 0

0 0

0 0

0 0 0

3 0

2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0

A = negligible DIF, B = low DIF, C = high DIF Male/Female White/African American White/Hispanic **DIF Class DIF Class** DIF Class ΑII MC CR ΑII MC CR ΑII MC CR Form В В вС В C С С В С В С Α В С В С В C Α Α Α Α Α Α Number Common 10 0 22 0 37 0 28 0 29 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0

3 0 0 3 0 0 0 0 0 0

3 0 0 3 0 0 0 0 0 0

Table 6-20. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 8 A = negligible DIF, B = low DIF, C = high DIF

			/	//ale/	/Fei		<u>r. — г</u> е	.og	<u>g</u>				Afric								N	/hite/	His	pan	ic		
				DIF	Cla	ass							DIF									DIF					
		ΑII		ı	MC			CR			All		I	MC			CR			ΑII		I	ИС		(CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	35	4	0	27	2	0	8	2	0	35	4	0	27	2	0	8	2	0	38	1	0	28	1	0	10	0	0
1	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0
2	0	2	0	0	1	0	0	1	0	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0
3	1	1	0	0	1	0	1	0	0	1	1	0	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
4	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	2	0	0	1	0	0	1	0	0
5	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0
6	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
7	3	1	0	2	1	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
8	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0	4	0	0	3	0	0	1	0	0
9	5	0	0	4	0	0	1	0	0	3	2	0	2	2	0	1	0	0	5	0	0	4	0	0	1	0	0
10	4	1	0	3	1	0	1	0	0	3	2	0	2	2	0	1	0	0	4	1	0	3	1	0	1	0	0
11	4	0	0	4	0	0	0	0	0	3	1	0	3	1	0	0	0	0	4	0	0	4	0	0	0	0	0
12	3	1	0	3	1	0	0	0	0	2	2	0	2	2	0	0	0	0	4	0	0	4	0	0	0	0	0

Table 6-21. 2009 MCAS: DIF Analysis by Form—Mathematics Grade 10 $A = negligible \ DIF, \ B = low \ DIF, \ C = high \ DIF$

			/	//ale		mal	<u>л — .</u> е		<u>g</u>				/Afric	an	Am		an				W	/hite/			ic		
				DIF	Cla	ass							DIF	Cla	ass							DIF	Cla	ss			
		All		ı	MC			CR			All		I	ИC		-	CR			All		ı	MC		(CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	37	5	0	27	5	0	10	0	0	36	5	1	26	5	1	10	0	0	38	4	0	28	4	0	10	0	0
01	4	0	0	4	0	0	0	0	0	3	1	0	3	1	0	0	0	0	3	1	0	3	1	0	0	0	0
02	2	0	0	2	0	0	0	0	0	1	1	0	1	1	0	0	0	0	2	0	0	2	0	0	0	0	0
03	4	0	0	4	0	0	0	0	0	1	3	0	1	3	0	0	0	0	2	1	1	2	1	1	0	0	0
04	3	0	0	1	0	0	2	0	0	3	0	0	1	0	0	2	0	0	2	0	1	0	0	1	2	0	0
05	4	0	0	3	0	0	1	0	0	1	3	0	0	3	0	1	0	0	2	1	1	1	1	1	1	0	0
06	3	0	0	2	0	0	1	0	0	0	3	0	0	2	0	0	1	0	2	1	0	2	0	0	0	1	0
07	4	0	0	3	0	0	1	0	0	2	1	1	2	0	1	0	1	0	3	1	0	2	1	0	1	0	0
80	3	0	0	2	0	0	1	0	0	2	1	0	1	1	0	1	0	0	1	2	0	1	1	0	0	1	0
09	2	1	0	2	1	0	0	0	0	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0
10	2	1	0	1	1	0	1	0	0	2	0	1	1	0	1	1	0	0	3	0	0	2	0	0	1	0	0
11	4	0	0	4	0	0	0	0	0	3	1	0	3	1	0	0	0	0	4	0	0	4	0	0	0	0	0
12	3	0	0	2	0	0	1	0	0	2	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	0	0
13	4	0	0	4	0	0	0	0	0	4	0	0	4	0	0	0	0	0	2	2	0	2	2	0	0	0	0
14	2	0	0	2	0	0	0	0	0	2	0	0	2	0	0	0	0	0	1	1	0	1	1	0	0	0	0
15	4	0	0	4	0	0	0	0	0	1	2	1	1	2	1	0	0	0	4	0	0	4	0	0	0	0	0
16	1	1	0	0	1	0	1	0	0	2	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0
17	3	1	0	2	1	0	1	0	0	1	2	1	0	2	1	1	0	0	2	2	0	1	2	0	1	0	0
18	1	1	0	1	1	0	0	0	0	1	1	0	1	1	0	0	0	0	2	0	0	2	0	0	0	0	0
19	3	1	0	3	0	0	0	1	0	4	0	0	3	0	0	1	0	0	3	0	1	2	0	1	1	0	0
20	2	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	0	0
21	2	1	0	2	1	0	0	0	0	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0
22	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
23	4	0	0	4	0	0	0	0	0	2	2	0	2	2	0	0	0	0	2	2	0	2	2	0	0	0	0
24	2	1	0	1	1	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
26	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0
28	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0

Table 6-22. 2009 MCAS: DIF Analysis by Form—Science and Technology/Engineering Grade 5

A = nealiaible DIF. B = low DIF. C = high DIF

							A = I	neg	iigik	ie ע	η <u>ς,</u>	<u>B</u> =	IOW	DIF	- , C	= r	iign	DIF	_								
			/	∕lale/	/Fer	male	е				Wr	ite/	'Afric	an i	Ame	eric	an				W	/hite/	/His	pan	ic		
				DIF	Cla	ss							DIF	Cla	SS							DIF	Cla	ass			
		ΑII		ı	ИС			CR			ΑII		I	ИС			CR			ΑII		ı	ИС		(CR	
Form Number	A B C A B C A B C								Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
Common	33	5	1	29	4	1	4	1	0	34	5	0	30	4	0	4	1	0	37	2	0	32	2	0	5	0	0
1	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0
2	4	0	0	4	0	0	0	0	0	3	0	1	3	0	1	0	0	0	2	2	0	2	2	0	0	0	0
3	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
4	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0
5	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0
6	4	0	0	3	0	0	1	0	0	3	1	0	2	1	0	1	0	0	2	2	0	1	2	0	1	0	0
7	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
8	3	0	0	2	0	0	1	0	0	2	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	0	0
9	3	0	0	3	0	0	0	0	0	1	2	0	1	2	0	0	0	0	2	1	0	2	1	0	0	0	0
10	2	1	0	2	1	0	0	0	0	2	0	1	2	0	1	0	0	0	3	0	0	3	0	0	0	0	0
11	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0	2	1	0	2	1	0	0	0	0
12	3	1	0	2	1	0	1	0	0	1	3	0	0	3	0	1	0	0	3	1	0	2	1	0	1	0	0

Table 6-23. 2009 MCAS: DIF Analysis by Form—Science and Technology/Engineering Grade 8

							A = I	neg	ligik	ole D	IF,	<u>B</u> =	low	DIF	- , C	= r	nigh	DIF	=								
			٨	//ale/	/Fei	mal	е				Wr	ite/	Afric	an .	Am	eric	an				W	/hite/	/His	par	ic		
				DIF	Cla	รรร							DIF	Cla	SS							DIF	Cla	ass			
	All MC CR									All		1	ИС			CR	_		All		1	МС		(CR		
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	О	Α	В	С	Α	В	С	Α	В	С
Common	38	1	0	34	0	0	4	1	0	33	6	0	29	5	0	4	1	0	36	3	0	31	3	0	5	0	0
1	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3	0	0	3	0	0	0	0	0
2	4	0	0	4	0	0	0	0	0	2	2	0	2	2	0	0	0	0	4	0	0	4	0	0	0	0	0
3	1	2	0	1	1	0	0	1	0	3	0	0	2	0	0	1	0	0	3	0	0	2	0	0	1	0	0
4	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0	0	0	0	3	0	0	3	0	0	0	0	0
5	2	1	0	2	1	0	0	0	0	0	3	0	0	3	0	0	0	0	2	1	0	2	1	0	0	0	0
6	4	0	0	3	0	0	1	0	0	2	1	1	1	1	1	1	0	0	3	1	0	2	1	0	1	0	0
7	3	0	0	2	0	0	1	0	0	1	2	0	1	1	0	0	1	0	3	0	0	2	0	0	1	0	0
8	2	1	0	1	1	0	1	0	0	1	1	1	0	1	1	1	0	0	1	2	0	0	2	0	1	0	0
9	3	0	0	3	0	0	0	0	0	2	0	1	2	0	1	0	0	0	1	2	0	1	2	0	0	0	0
10	0	3	0	0	3	0	0	0	0	2	1	0	2	1	0	0	0	0	3	0	0	3	0	0	0	0	0
11	3	0	0	3	0	0	0	0	0	1	2	0	1	2	0	0	0	0	3	0	0	3	0	0	0	0	0
12	4	0	0	3	0	0	1	0	0	2	2	0	1	2	0	1	0	0	4	0	0	3	0	0	1	0	0

Table 6-24. 2009 MCAS: DIF Analysis by Form— High School Biology (Grades 9–11) A = negligible DIF, B = low DIF, C = high DIF

Male/Female White/African American White/Hispanic DIF Class DIF Class DIF Class ΑII MC CR ΑII MC CR ΑII MC CR Form В С В С В С В С В С В С В С Α В С В С Α Α Α Number 4 2 38 0 33 7 0 5 0 0 41 4 0 36 0 5 0 0 43 2 0 38 5 0 Common

Table 6-25. 2009 MCAS: DIF Analysis by Form— High School Chemistry (Grades 9–11)

A = negligible DIF, B = low DIF, C = high DIF

			Λ	1ale/	/Fei	mal	e				Wh	ite//	4 <i>fric</i>	an Ar	ner	icai	n				Wł	nite/l	Hisp	ani	C		
	DIF Class										DIF	Class	3							DIF	Clas	SS					
		ΑII		- 1	ИС			CR			All			МС			CR	2		AII			МС		1	CR	
Form	Λ	В		Λ	В	С	Α	D	С	Α	В	С	Α	В	С	Α	D	С	٨	В)	Λ	В	(Λ	В	С
Number	A	D	C	А	D	C	А	D	C	А	D	C	А	D	C	А	D	C	А	Ь	C	А	D	C	A	D	
Common	37	8	0	32	8	0	5	0	0	29	12	4	24	12	4	5	0	0	30	12	3	26	11	3	4	1	0

Table 6-26. 2009 MCAS: DIF Analysis by Form— High School Introductory Physics (Grades 9–11)

A = negligible DIF, B = low DIF, C = high DIF

							<i>,</i> , –	110	$g^{\prime\prime\prime}g^{\prime\prime}$	1210	<u> </u>					- , ,,,	<i>,,,</i> ,,										
			٨	/lale/	/Fei	mal	е				Wh	ite//	Africa	an A	mei	rica	n				W	/hite/	/His	par	nic		
		DIF Class										I	DIF (Clas.	S							DIF	Cla	ass			
	All MC CR									All			МС			CR			ΑII		ı	ИС			CR		
Form	۸	В	C	4	В	O	А	В	O	Λ	В	C	Α	В	(A	D	O	А	В	С	Α	D	O	Λ	В	C
Number	А	Ь	١	τ	D	٥	τ	Ь	C	τ	ם	١	τ	ם	١	τ	Ь	٥	τ	D	٥	4	Ь	٥	τ	Ь	٥
Common	41	4	0	37	3	0	4	1	0	34	11	0	30	10	0	4	1	0	41	4	0	36	4	0	5	0	0

Table 6-27. 2009 MCAS: DIF Analysis by Form—High School Technology/Engineering (Grades 9-11)

A = negliaible DIF, B = low DIF, C = high DIF

		Male/Female DIF Class									WI	hite		can i Cla		eric	an					hite/i DIF	•		С		
		All			MC			CR)		All			MC			CR			All			MC			CR	
Form Number	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Common	26	16	3	23	14	3	3	2	0	31	7	7	27	6	7	4	1	0	29	12	4	25	11	4	4	1	0

6.1.2.3 DIF Categorization by Gender and Item Type

Tables 6-28 (grades 3 through 8) and 6-29 (high school) show the number of items in each of the three DIF categories that favored females or males. Only common items (on which student scores are based) were considered in these calculations.

- In grades 3 through 8 (Table 6-28), three tests each had one item (ELA grade 8, mathematics grade 6, and science and technology/engineering grade 5), and one test had two items (ELA grade 7), where there was a high level of DIF. In all cases the items identified with high DIF were MC items that favored males.
- In grade 10 ELA (Table 6-29), one MC item was identified as having high level DIF that favored males.
- In the high school technology/engineering test (also Table 6-29), three MC items were identified as having high level DIF that favored males. One should keep in mind that for this particular test there were fewer examinees and an increased likelihood that the items identified could be a statistical artifact (i.e., Type I error).

Table 6-28. 2009 MCAS: DIF Categorization of Common Items by Gender and Item Type—Grades 3–8 MC = multiple-choice, OR = open-response and writing prompt

				Negligib	le DIF			Low D)IF			High D)IF	
Content Area	Grade Level	Item Type	Favor Female	Favor Male	Number	%	Favor Female	Favor Male	Number	%	Favor Female	Favor Male	Number	%
	3	MC	28	11	39	98	0	1	1	3	0	0	0	0
	3	OR	2	0	2	100	0	0	0	0	0	0	0	0
	4	MC	12	17	29	81	0	7	7	19	0	0	0	0
	4	OR	5	1	6	100	0	0	0	0	0	0	0	0
	5	MC	17	16	33	92	0	3	3	8	0	0	0	0
English	5	OR	4	0	4	100	0	0	0	0	0	0	0	0
Language Arts	6	MC	14	20	34	94	1	1	2	6	0	0	0	0
	U	OR	4	0	4	100	0	0	0	0	0	0	0	0
	7	MC	13	16	29	81	0	5	5	14	0	2	2	6
	1	OR	5	0	5	83	1	0	1	17	0	0	0	0
	8	MC	14	16	30	83	0	5	5	14	0	1	1	3
	O	OR	2	0	2	50	2	0	2	50	0	0	0	0
	3	MC	12	11	23	92	0	2	2	8	0	0	0	0
		OR	9	1	10	100	0	0	0	0	0	0	0	0
	4	MC	18	10	28	97	0	1	1	3	0	0	0	0
		OR	7	1	8	80	0	2	2	20	0	0	0	0
	5	MC	16	10	26	90	1	2	3	10	0	0	0	0
Mathematics		OR	8	2	10	100	0	0	0	0	0	0	0	0
Iviatifematics	6	MC	12	10	22	76	2	4	6	21	0	1	1	3
	0	OR	9	1	10	100	0	0	0	0	0	0	0	0
	7	MC	12	10	22	76	2	5	7	24	0	0	0	0
	,	OR	5	2	7	70	1	2	3	30	0	0	0	0
	8	MC	20	7	27	93	0	2	2	7	0	0	0	0
	0	OR	5	3	8	80	0	2	2	20	0	0	0	0
Science and	5	MC	10	19	29	85	2	2	4	12	0	1	1	3
Technology/	J	OR	2	2	4	80	1	0	1	20	0	0	0	0
Engineering	8	MC	12	22	34	100	0	0	0	0	0	0	0	0
Linginiconing	J	OR	3	1	4	80	1	0	1	20	0	0	0	0

Table 6-29. 2009 MCAS: Categorization of Common Items by Gender and Item Type—High School MC = multiple-choice, OR = open-response

				Negligik	ole DIF		Low	DIF	High DIF					
Content Area	Grade Level	Item Type	Favor Female	Favor Male	Number	%	Favor Female	Favor Male	Number	%	Favor Female	Favor Male	Number	%
ELA		MC	8	25	33	92	0	2	2	6	0	1	1	3
ELA	10	OR	5	0	5	83	1	0	1	17	0	0	0	0
Mathematics	ן יי [MC	12	15	27	84	1	4	5	16	0	0	0	0
Mathematics		OR	6	4	10	100	0	0	0	0	0	0	0	0
Biology		MC	17	16	33	83	2	5	7	18	0	0	0	0
Біоіоду		OR	5	0	5	100	0	0	0	0	0	0	0	0
Chemistry	1	MC	16	16	32	80	2	6	8	20	0	0	0	0
Chemistry	9-11	OR	5	0	5	100	0	0	0	0	0	0	0	0
Introductory	9-11	MC	18	19	37	93	0	3	3	8	0	0	0	0
Physics		OR	4	0	4	80	1	0	1	20	0	0	0	0
Technology/	1 [MC	10	13	23	58	2	12	14	35	0	3	3	8
Engineering		OR	3	0	3	60	2	0	2	40	0	0	0	0

6.1.2.4 DIF Categorization by Ethnicity and Item Type

Tables 6-30 through 6-33 show the number of items in each of the three DIF categories that favored various ethnicity groups. The only ethnicity groups considered for this analysis were African American (Tables 6-30 and 6-31) and Hispanic (Tables 6-32 and 6-33). Other ethnicity groups did not have the necessary sample size to support these analyses. Additionally, only common items (on which student scores are based) were considered in these calculations.

For the African American – White DIF statistics (Tables 6-30 and 6-31):

- In grade 8 ELA, three MC items had high level DIF that favored the White student subgroup.
- In grade 4 mathematics, two MC items had high level DIF that favored the White student subgroup.
- In grade 10 ELA, four MC items had high level DIF that favored the White student subgroup.
- In grade 10 mathematics, one MC item had high level DIF that favored the White student subgroup.
- In high school chemistry, four MC items had high level DIF; three favored the White student subgroup while the fourth favored the African American student subgroup.
- In high school technology/engineering, seven MC items had high level DIF; six favored the White student subgroup while one favored the African American student subgroup.

For the Hispanic – White DIF statistics (Tables 6-32 and 6-33):

- In grade 8 ELA, three MC items had high level DIF that favored the White student subgroup.
- In grade 4 mathematics, one MC item had high level DIF that favored the White student subgroup.
- In grade 10 ELA, two MC items had high level DIF that favored the White student subgroup.
- In high school chemistry, three MC items had high level DIF that favored the White student subgroup.
- In high school technology/engineering, four MC items had high level DIF that favored the White student subgroup.

Table 6-30. 2009 MCAS: DIF Categorization of Common Items by Ethnicity and Item Type—Grades 3–8 MC = multiple-choice, OR = open-response and writing prompt

			Negligible DIF				,	Low D)IF	High DIF				
Content Area	Grade Level	Item Type	African American	White	Number	%	African American	White	Number	%	African American	White	Number	%
	2	MC	12	26	38	95	0	2	2	5	0	0	0	0
	3	OR	2	0	2	100	0	0	0	0	0	0	0	0
	4	MC	3	25	28	78	0	8	8	22	0	0	0	0
	4	OR	6	0	6	100	0	0	0	0	0	0	0	0
	5	MC	10	20	30	83	0	6	6	17	0	0	0	0
English	3	OR	4	0	4	100	0	0	0	0	0	0	0	0
Language Arts	6	MC	8	23	31	86	0	5	5	14	0	0	0	0
	U	OR	4	0	4	100	0	0	0	0	0	0	0	0
	7	MC	7	21	28	78	1	7	8	22	0	0	0	0
	/	OR	4	2	6	100	0	0	0	0	0	0	0	0
	8	MC	11	17	28	78	0	5	5	14	0	3	3	8
		OR	4	0	4	100	0	0	0	0	0	0	0	0
	3	MC	12	11	23	92	0	2	2	8	0	0	0	0
		OR	3	4	7	70	0	3	3	30	0	0	0	0
	4	MC	10	15	25	86	0	2	2	7	0	2	2	7
		OR	5	5	10	100	0	0	0	0	0	0	0	0
	5	MC	12	13	25	86	2	2	4	14	0	0	0	0
Mathematics	3	OR	3	5	8	80	0	2	2	20	0	0	0	0
Mathematics	6	MC	12	17	29	100	0	0	0	0	0	0	0	0
	0	OR	2	7	9	90	0	1	1	10	0	0	0	0
	7	MC	13	15	28	97	0	1	1	3	0	0	0	0
	1	OR	3	6	9	90	0	1	1	10	0	0	0	0
	8	MC	11	16	27	93	1	1	2	7	0	0	0	0
	0	OR	2	6	8	80	1	1	2	20	0	0	0	0
Science and	5	MC	9	21	30	88	0	4	4	12	0	0	0	0
Technology/	J	OR	0	4	4	80	0	1	1	20	0	0	0	0
Engineering	8	MC	8	21	29	85	0	5	5	15	0	0	0	0
Linginiconing	J	OR	2	2	4	80	0	1	1	20	0	0	0	0

Table 6-31. 2009 MCAS: Categorization of Common Items by Ethnicity and Item Type—High School MC = multiple-choice, OR = open-response

				e DIF		Low	DIF		High DIF					
Content Area	Grade Level	Item Type	African American	White	Number	%	African American	White	Number	%	African American	White	Number	%
ELA		MC	11	16	27	75	0	5	5	14	0	4	4	11
ELA	10	OR	5	1	6	100	0	0	0	0	0	0	0	0
Mathematics	10	MC	13	13	26	81	0	5	5	16	0	1	1	3
Ivialitematics		OR	5	5	10	100	0	0	0	0	0	0	0	0
Biology		MC	16	20	36	90	0	4	4	10	0	0	0	0
ыоюду		OR	0	5	5	100	0	0	0	0	0	0	0	0
Chemistry		MC	15	9	24	60	3	9	12	30	1	3	4	10
Chemistry	9-11	OR	2	3	5	100	0	0	0	0	0	0	0	0
Introductory	9-11	MC	14	16	30	75	3	7	10	25	0	0	0	0
Physics		OR	1	3	4	80	0	1	1	20	0	0	0	0
Technology/		MC	13	14	27	68	1	5	6	15	1	6	7	18
Engineering		OR	3	1	4	80	1	0	1	20	0	0	0	0

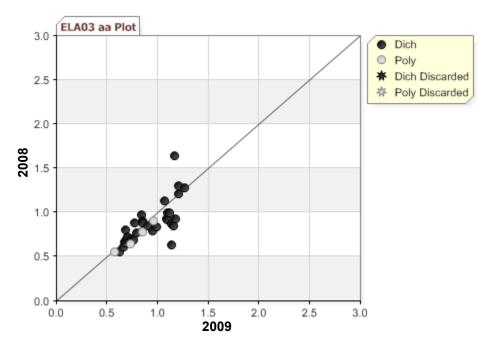
Table 6-32. 2009 MCAS: DIF Categorization of Common Items by Ethnicity and Item Type—Grades 3–8 MC = multiple-choice, OR = open-response and writing prompt

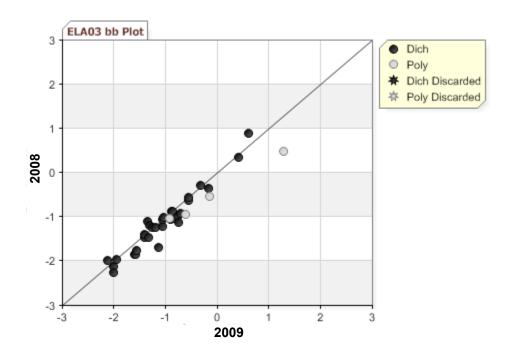
				Negligible	e DIF	•	Low D)IF	High DIF					
Content Area	Grade Level	Item Type	Hispanic	White	Number	%	Hispanic	White	Number	%	Hispanic	White	Number	%
	2	MC	12	26	38	95	0	2	2	5	0	0	0	0
	3	OR	2	0	2	100	0	0	0	0	0	0	0	0
	4	MC	4	24	28	78	0	8	8	22	0	0	0	0
	4	OR	6	0	6	100	0	0	0	0	0	0	0	0
	5	MC	6	25	31	86	0	5	5	14	0	0	0	0
English	3	OR	4	0	4	100	0	0	0	0	0	0	0	0
Language Arts	6	MC	3	28	31	86	0	5	5	14	0	0	0	0
	U	OR	4	0	4	100	0	0	0	0	0	0	0	0
	7	MC	9	21	30	83	0	6	6	17	0	0	0	0
	7	OR	4	2	6	100	0	0	0	0	0	0	0	0
	8	MC	11	18	29	81	0	4	4	11	0	3	3	8
		OR	4	0	4	100	0	0	0	0	0	0	0	0
	3	MC	11	13	24	96	0	1	1	4	0	0	0	0
		OR	5	3	8	80	0	2	2	20	0	0	0	0
	4	MC	13	12	25	86	0	3	3	10	0	1	1	3
		OR	4	6	10	100	0	0	0	0	0	0	0	0
	5	MC	14	14	28	97	0	1	1	3	0	0	0	0
Mathematics	J	OR	3	6	9	90	0	1	1	10	0	0	0	0
Mathematics	6	MC	10	19	29	100	0	0	0	0	0	0	0	0
		OR	3	6	9	90	0	1	1	10	0	0	0	0
	7	MC	12	17	29	100	0	0	0	0	0	0	0	0
	,	OR	1	8	9	90	0	1	1	10	0	0	0	0
	8	MC	8	20	28	97	0	1	1	3	0	0	0	0
	0	OR	5	5	10	100	0	0	0	0	0	0	0	0
Science and	5	MC	10	22	32	94	0	2	2	6	0	0	0	0
Technology/		OR	0	5	5	100	0	0	0	0	0	0	0	0
Engineering	8	MC	9	22	31	91	0	3	3	9	0	0	0	0
Linginieening	0	OR	0	5	5	100	0	0	0	0	0	0	0	0

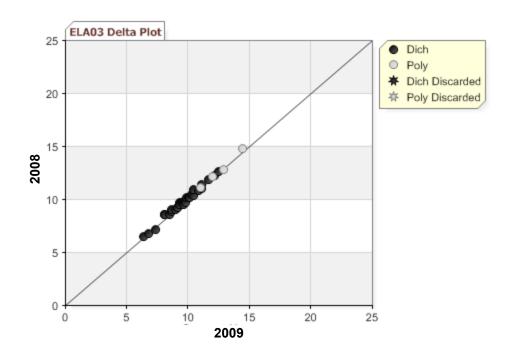
Table 6-33. 2009 MCAS: Categorization of Common Items by Ethnicity and Item Type—High School MC = multiple-choice, OR = open-response

			Negligible DIF					Low	DIF		High DIF				
Content Area	Grade Level	Item Type	Hispanic	White	Number	%	Hispanic	White	Number	%	Hispanic	White	Number	%	
ELA		MC	10	19	29	81	0	5	5	14	0	2	2	6	
ELA	10	OR	4	2	6	100	0	0	0	0	0	0	0	0	
Mathematics	ן וטי	MC	13	15	28	88	0	4	4	13	0	0	0	0	
Iviatifernatics		OR	4	6	10	100	0	0	0	0	0	0	0	0	
Biology		MC	15	23	38	95	0	2	2	5	0	0	0	0	
ыоюду		OR	0	5	5	100	0	0	0	0	0	0	0	0	
Chemistry		MC	11	15	26	65	3	8	11	28	0	3	3	8	
Chemistry	9-11	OR	2	2	4	80	0	1	1	20	0	0	0	0	
Introductory	9-11	MC	19	17	36	90	0	4	4	10	0	0	0	0	
Physics		OR	0	5	5	100	0	0	0	0	0	0	0	0	
Technology/		MC	10	15	25	63	3	8	11	28	0	4	4	10	
Engineering		OR	3	1	4	80	0	1	1	20	0	0	0	0	

6.2 Item Response Theory (IRT) Analyses


For the 2009 MCAS tests, the three-parameter logistic (3PL) model was used for dichotomous items. The graded-response model (GRM) was used for polytomous items. Detailed definitions of the 3PL model and the GRM are presented in the 2007 MCAS Technical Report, along with descriptions of how item category characteristic curves (ICCCs), item characteristic curves (ICCs), and test characteristic curves (TCCs) are computed.


Figures 6-1 through 6-20 present, for each MCAS grade and content area test combination, a comparison between the 2009 and 2008 discrimination and difficulty indices (a/a and b/b plots), with the delta plot. The 2009 TCC and test information (TIF) and the student scaled score cumulative distribution are also provided with their 2008 counterparts, when applicable.


Note that for grade 10 the assessments are pre-equated. Thus, the various plots (e.g., a/a, b/b, and delta) are developed to ensure data accuracy, and not to evaluate the equating per se. That is, these plots are used to ensure that proper bookkeeping has been done and that all item parameters have been properly accounted for. Additionally, because the a/a and b/b plots are constructed using pre-equated item parameters, these plots can be used to evaluate item-model fit and to determine if any estimated parameters need to be further scrutinized by psychometricians.

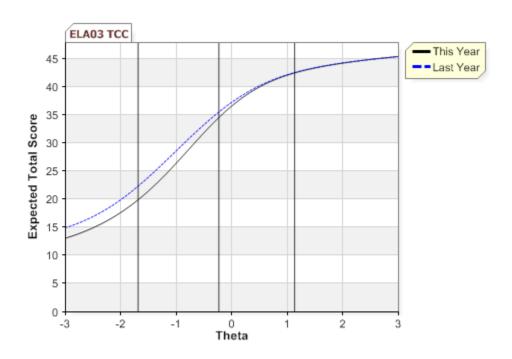
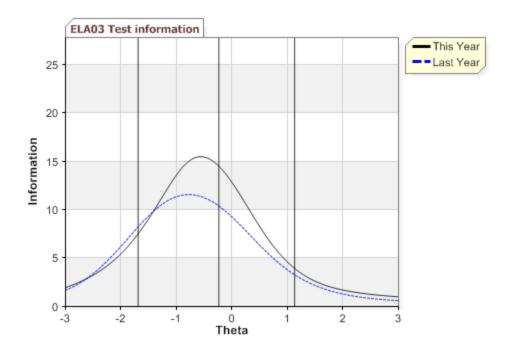
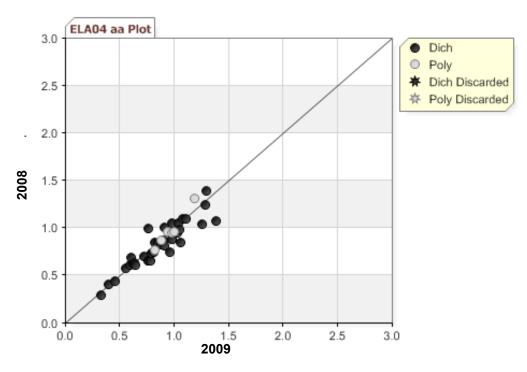
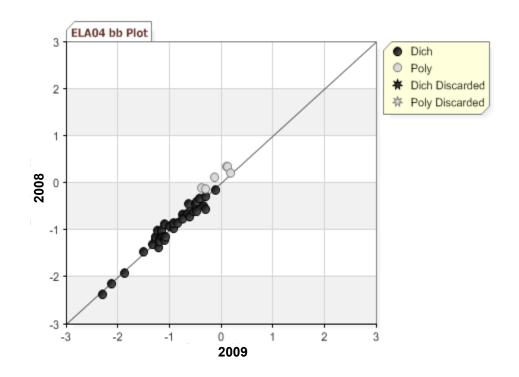
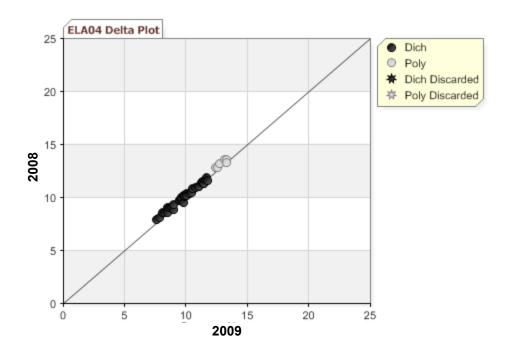
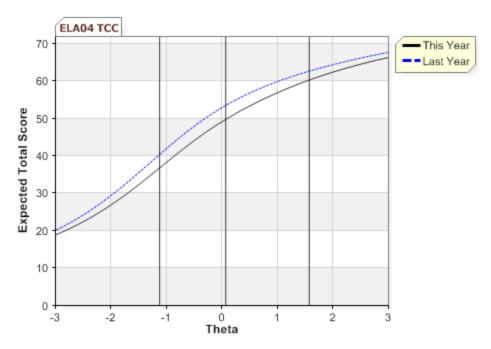
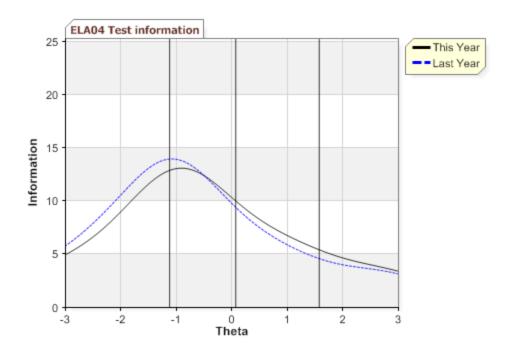
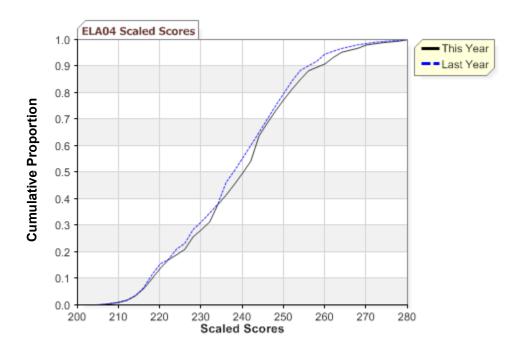
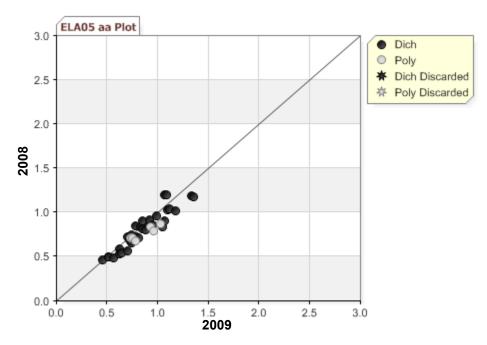
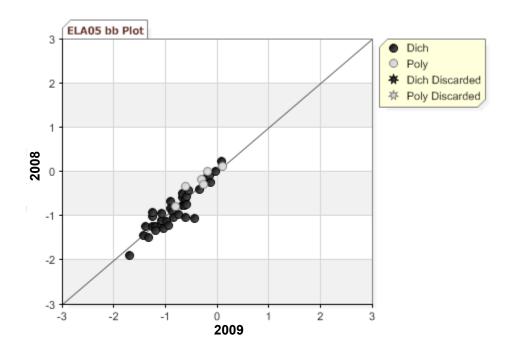
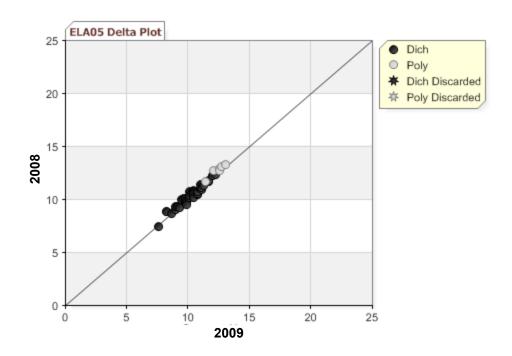
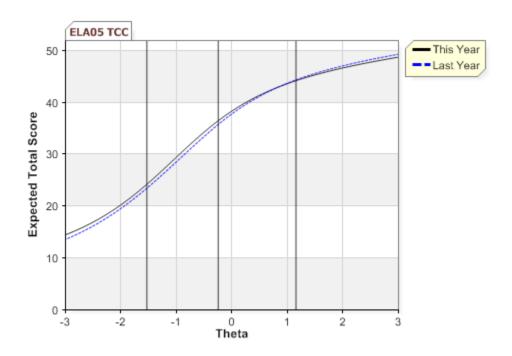
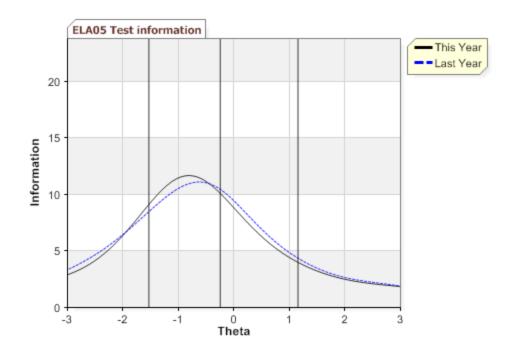

Information curves that are developed during the equating phase are also used to guide test development and form-construction activities. These curves can be used to determine if item dispersion across the performance continuum needs to change to ensure that performance across the entire continuum (with particular emphasis being made at the cutscores) is being adequately measured. Test developers work with psychometricians so that any changes to item dispersion happen gradually to ensure that equating from one year to the next is not compromised.

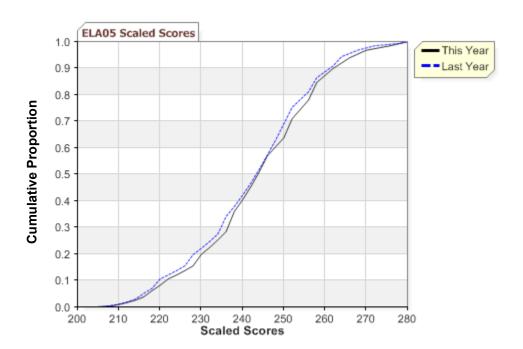
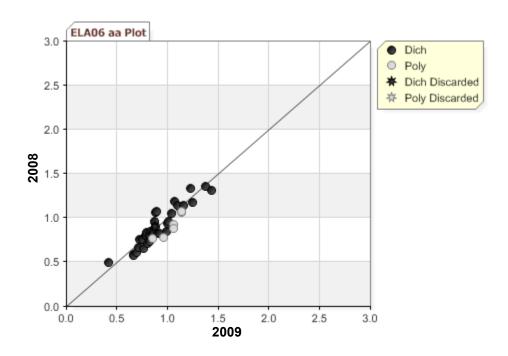
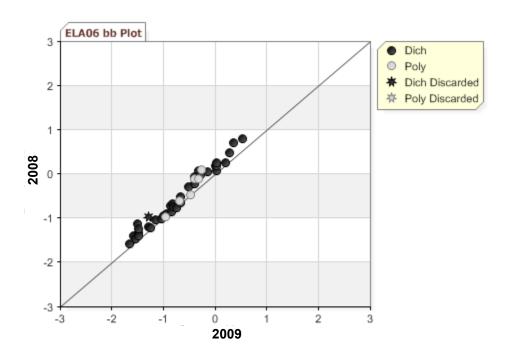
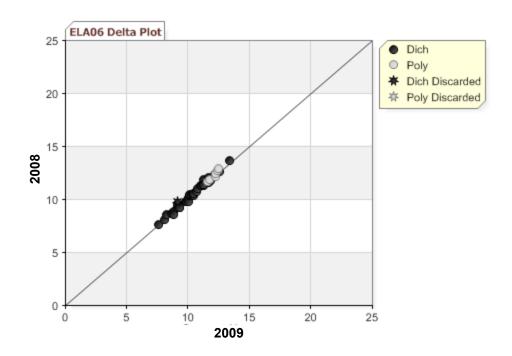
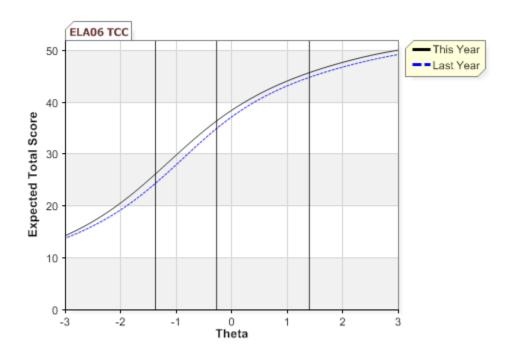
Figure 6-1. 2009 MCAS: IRT Statistics—English Language Arts Grade 3

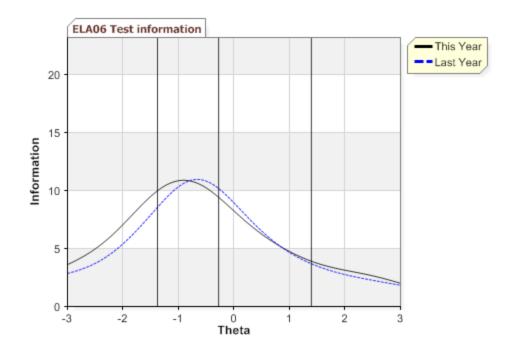






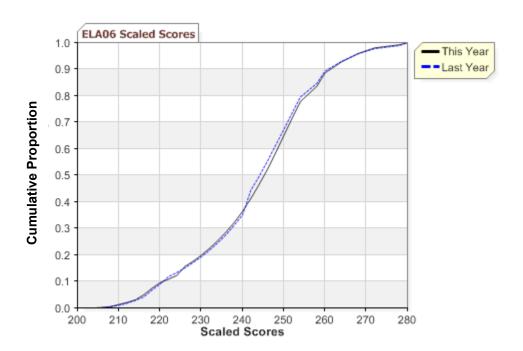
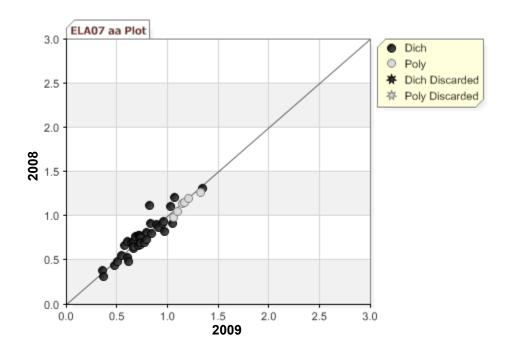
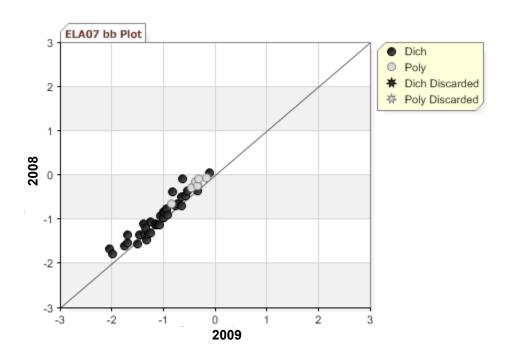
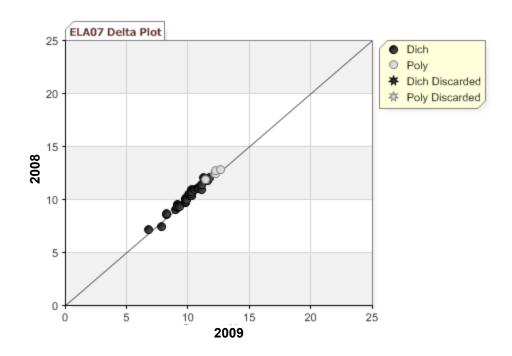
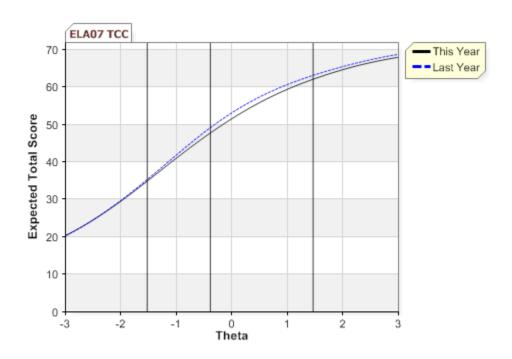

Figure 6-2. 2009 MCAS: IRT Statistics—English Language Arts Grade 4

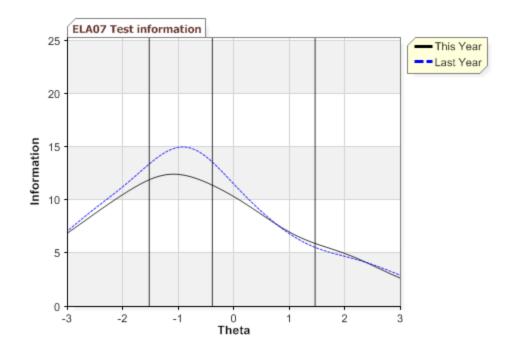






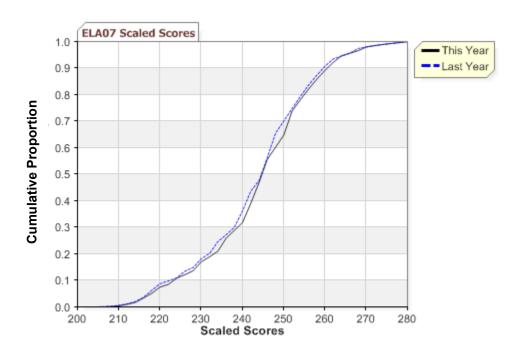
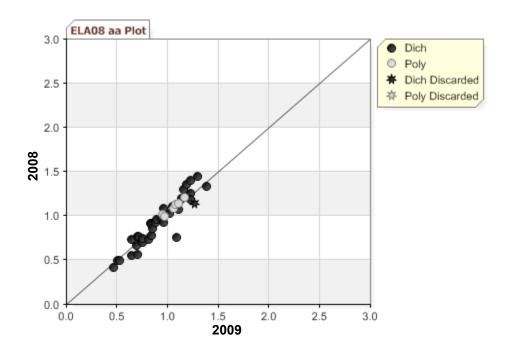
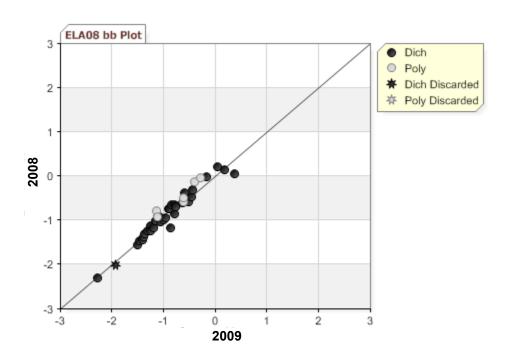
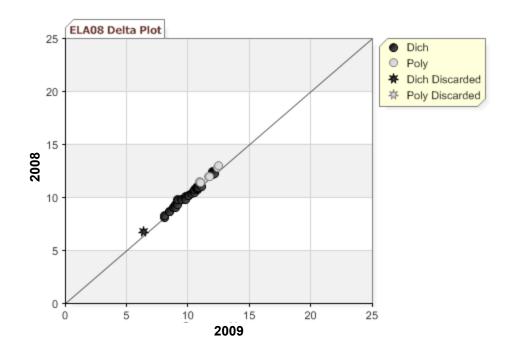
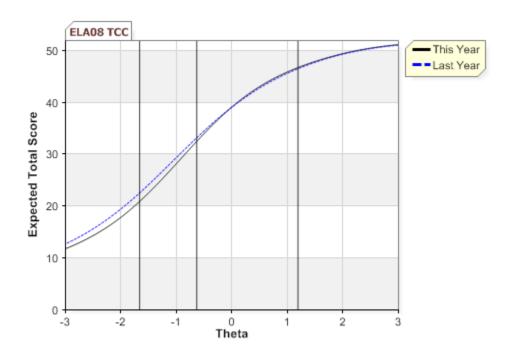

Figure 6-3. 2009 MCAS: IRT Statistics—English Language Arts Grade 5

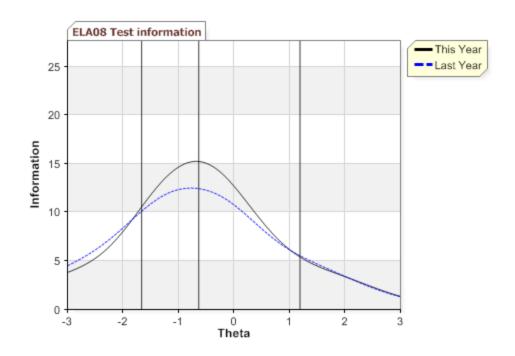







Figure 6-4. 2009 MCAS: IRT Statistics—English Language Arts Grade 6


Figure 6-5. 2009 MCAS: IRT Statistics—English Language Arts Grade 7


Figure 6-6. 2009 MCAS: IRT Statistics—English Language Arts Grade 8

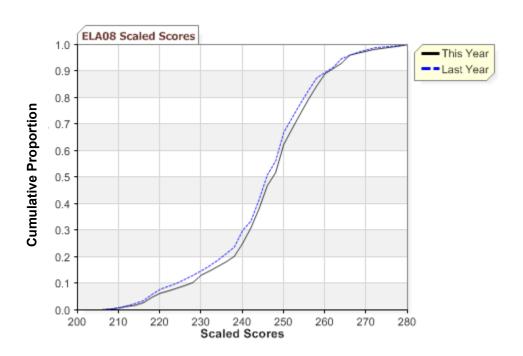
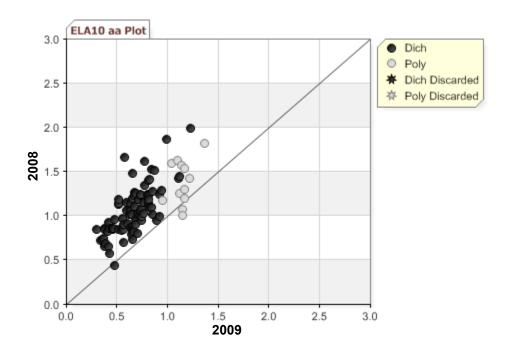
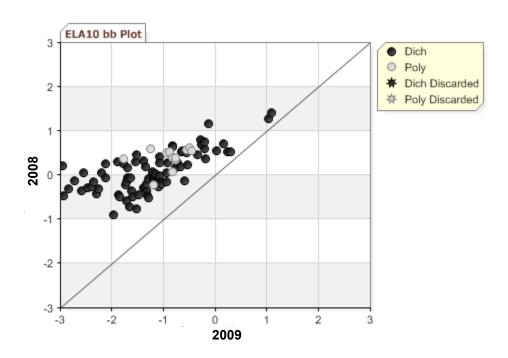
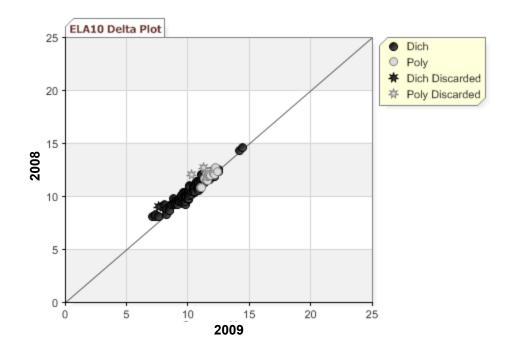
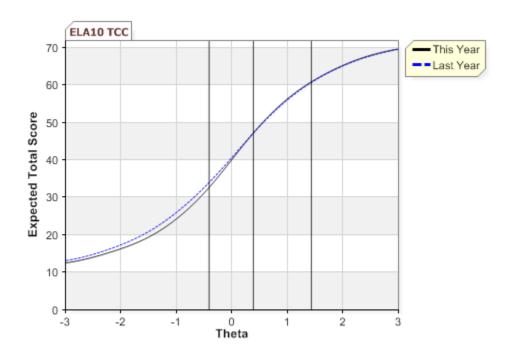
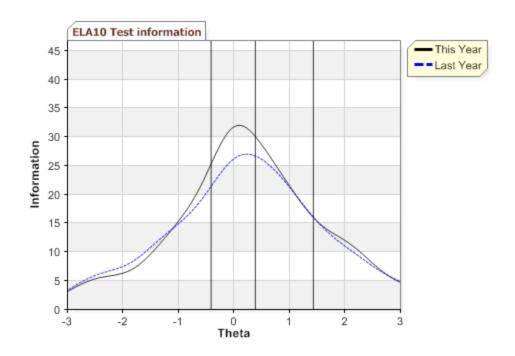
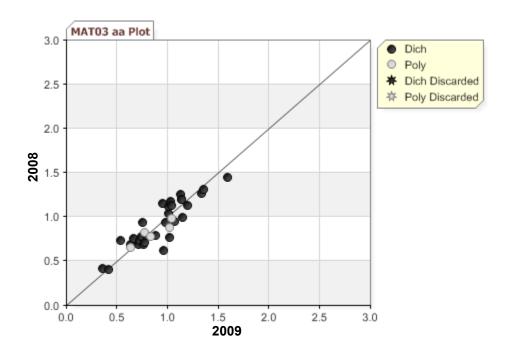
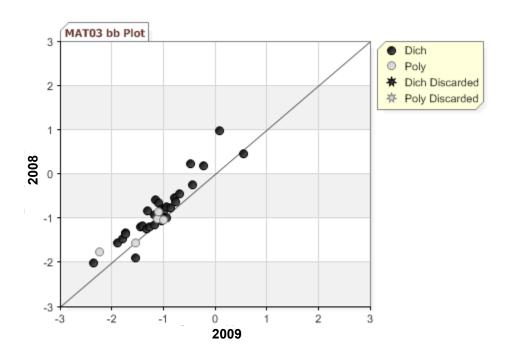
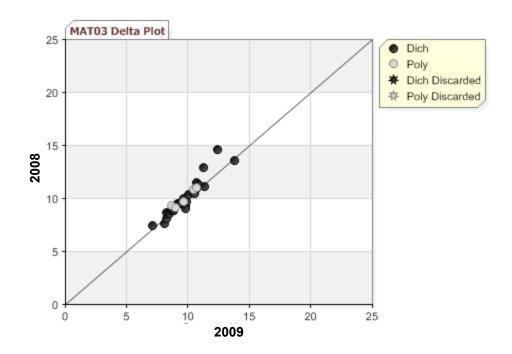






Figure 6-7. 2009 MCAS: IRT Statistics—English Language Arts Grade 10

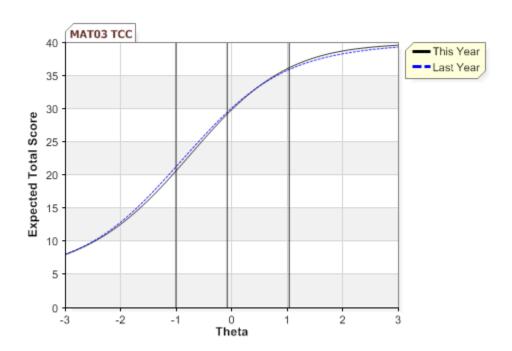
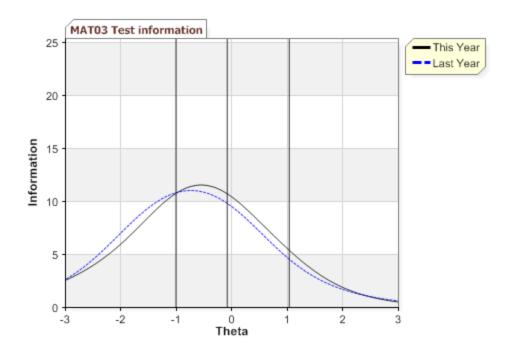
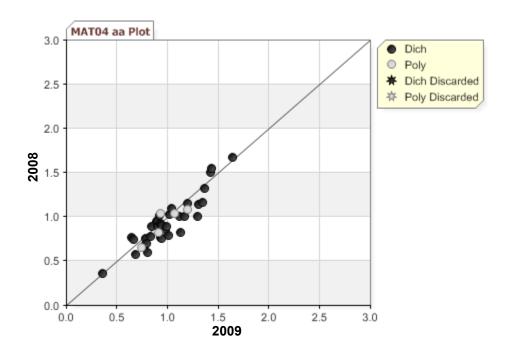
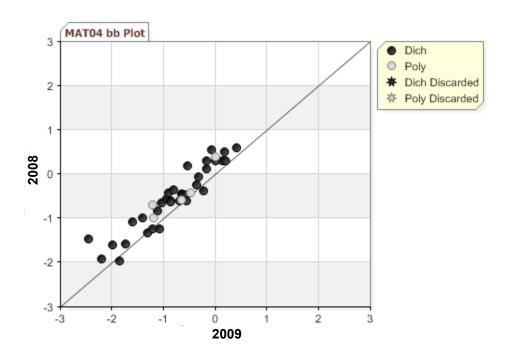
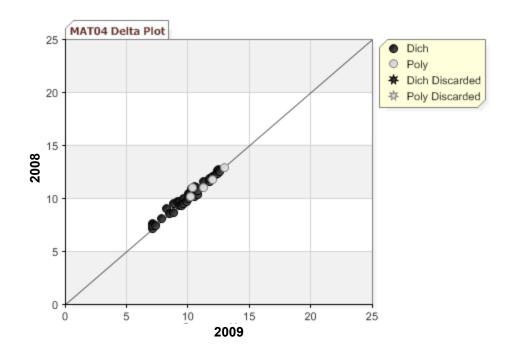
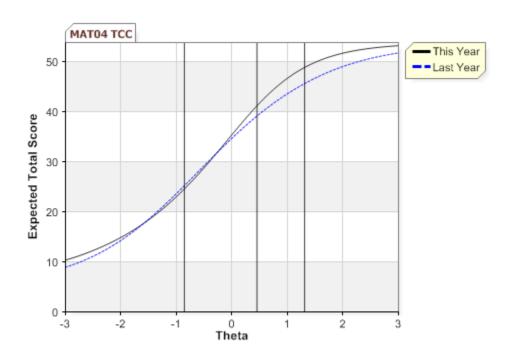
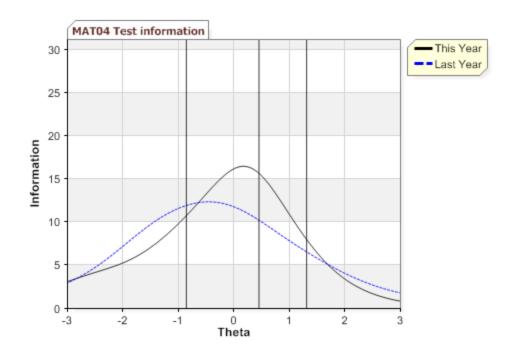
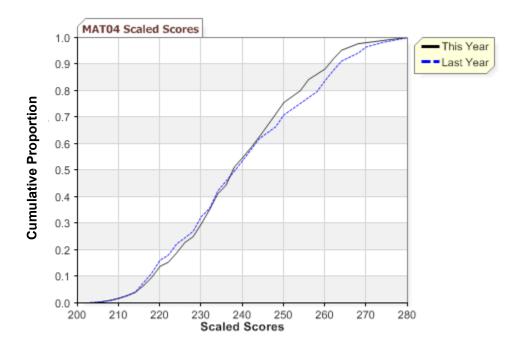
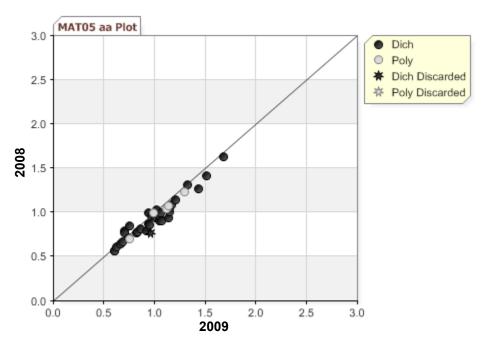
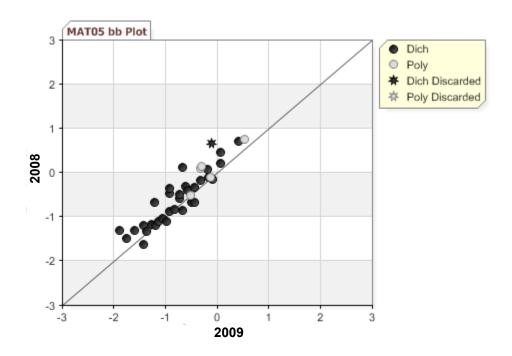
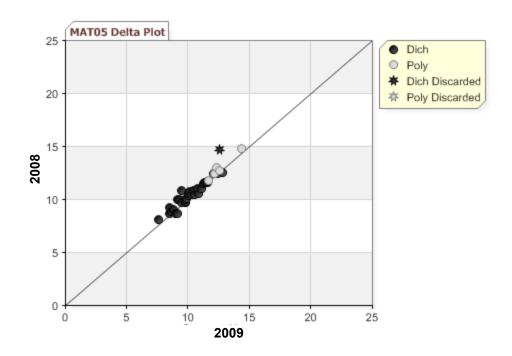
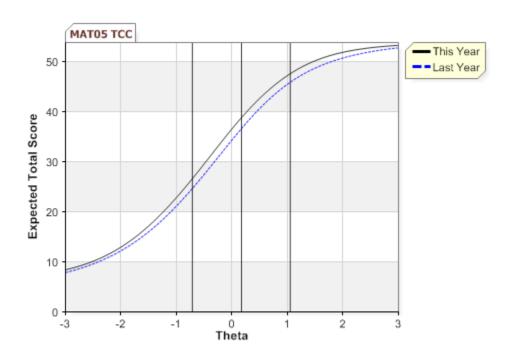
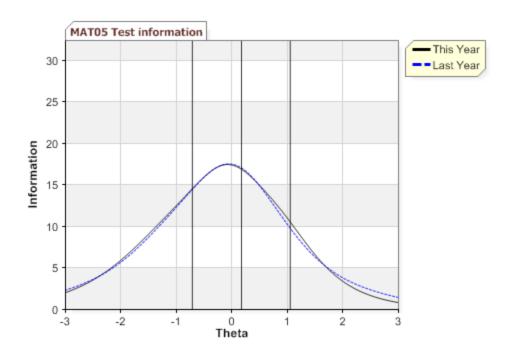


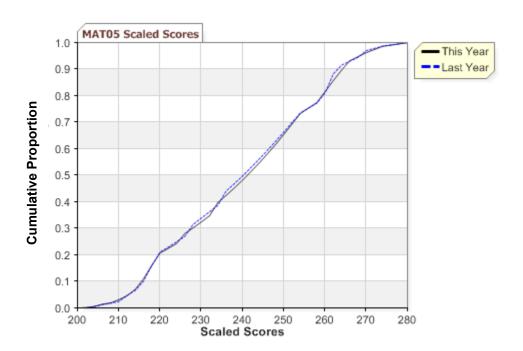
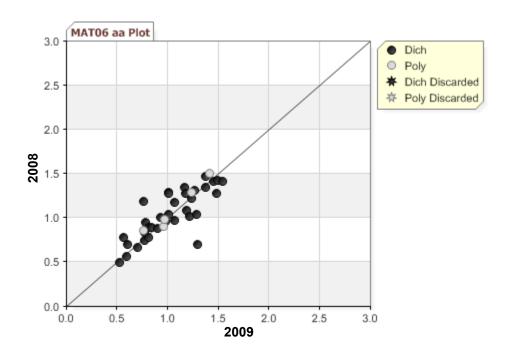
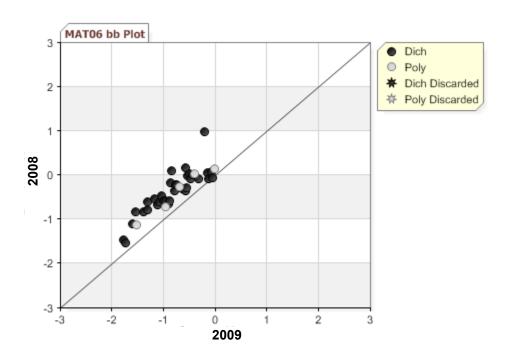
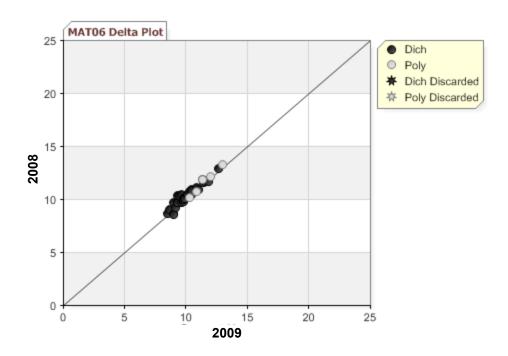
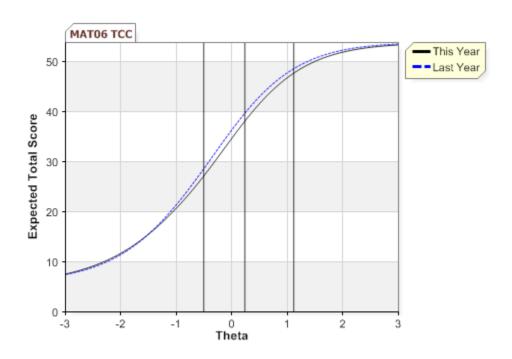
Figure 6-8. 2009 MCAS: IRT Statistics—Mathematics Grade 3

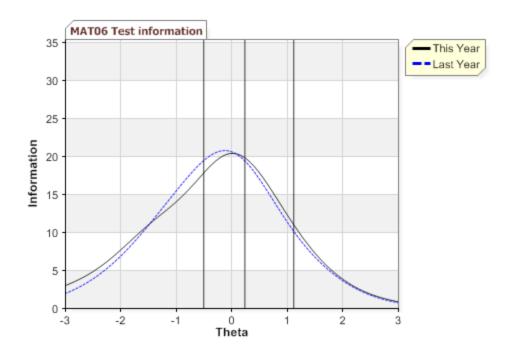







Figure 6-9. 2009 MCAS: IRT Statistics—Mathematics Grade 4


Figure 6-10. 2009 MCAS: IRT Statistics—Mathematics Grade 5


Figure 6-11. 2009 MCAS: IRT Statistics—Mathematics Grade 6

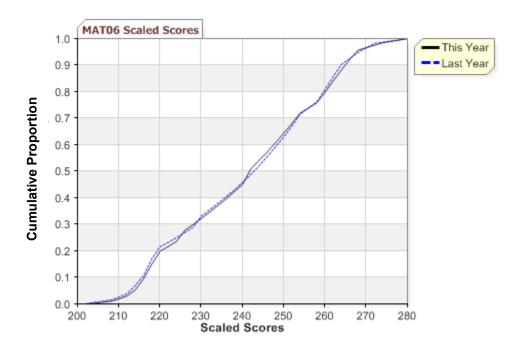
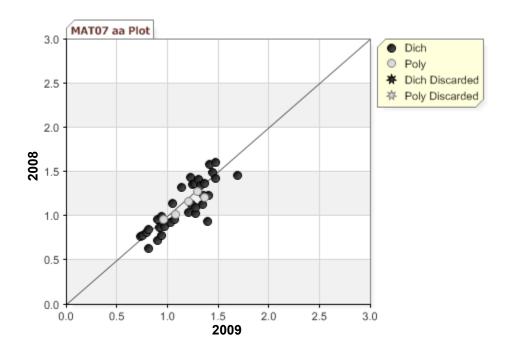
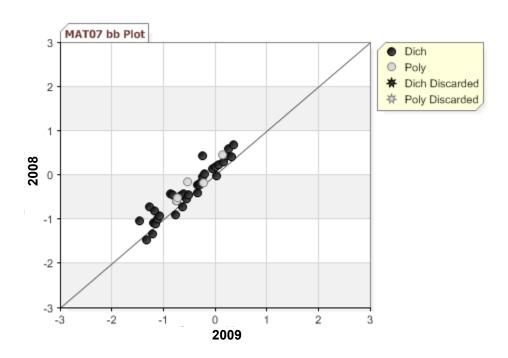
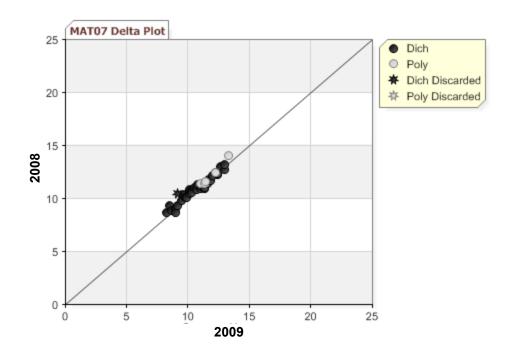
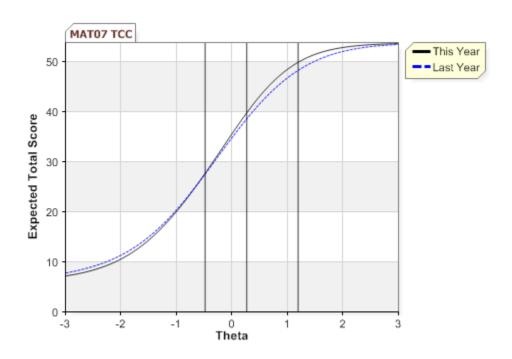
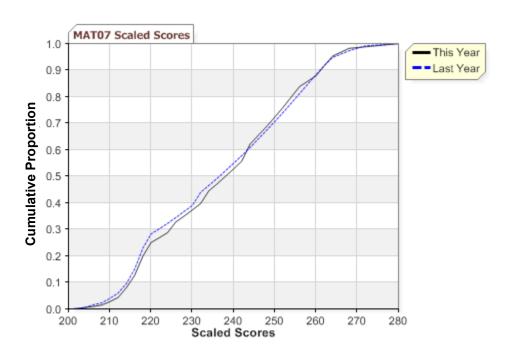
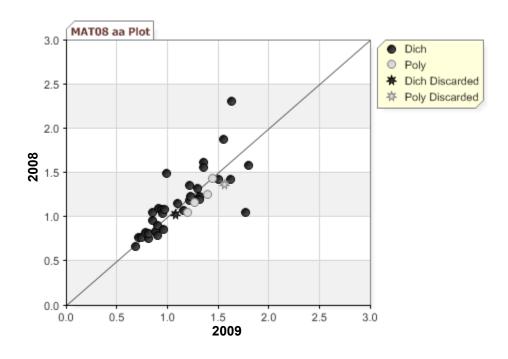
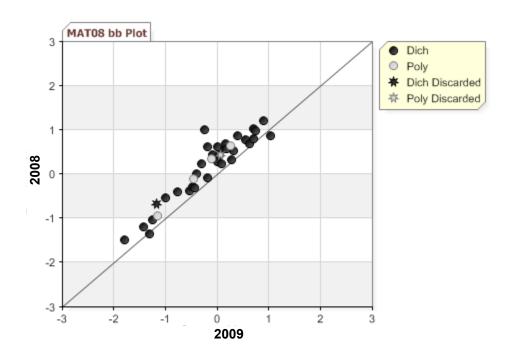
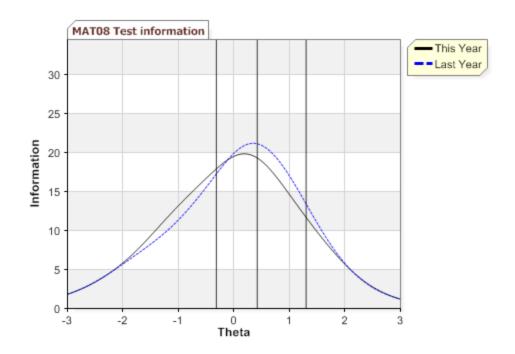
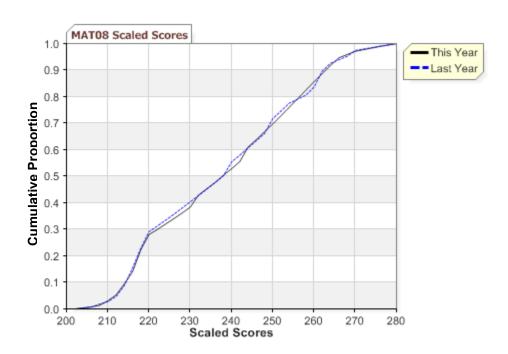
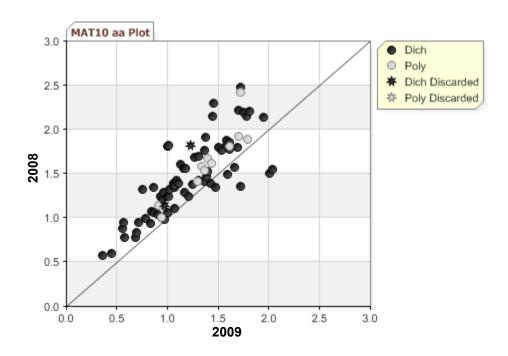
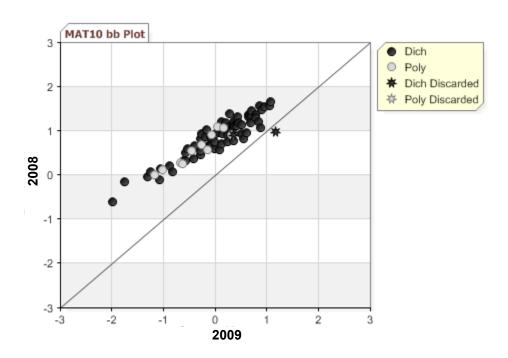
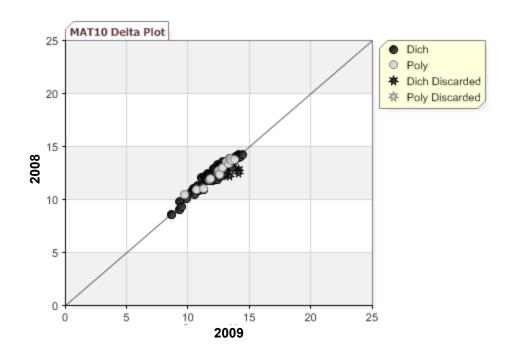
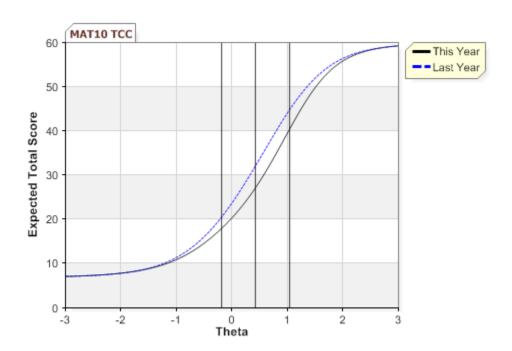
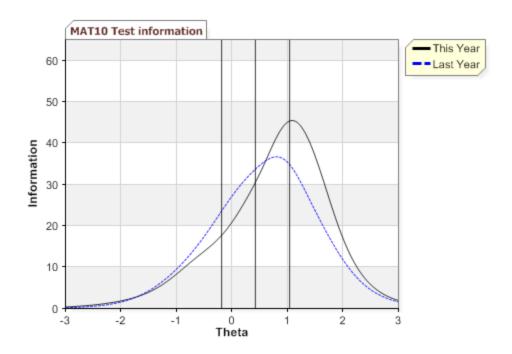






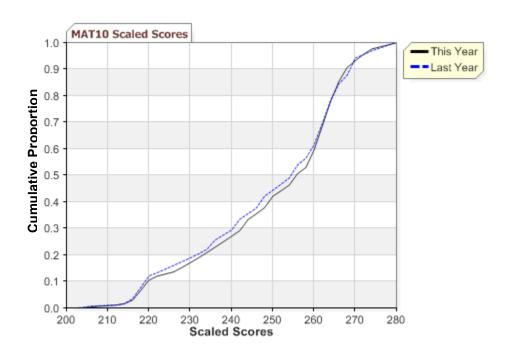
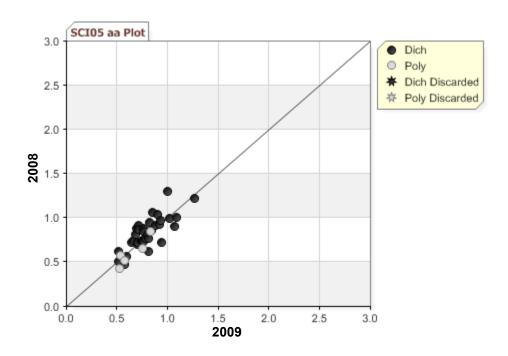
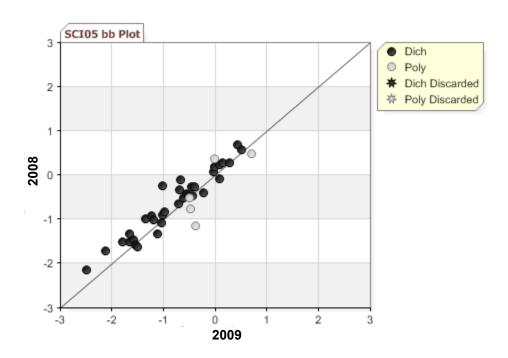
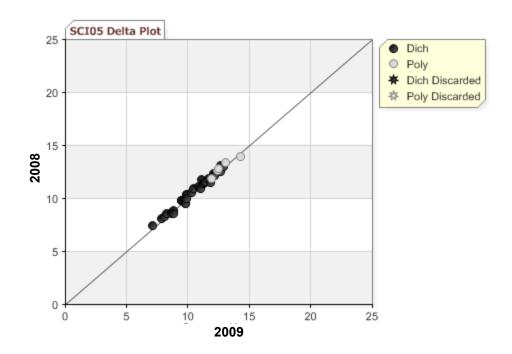
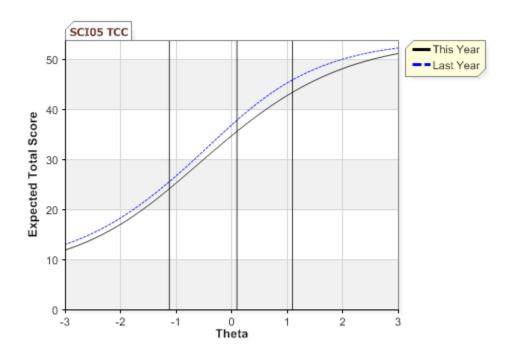
Figure 6-12. 2009 MCAS: IRT Statistics—Mathematics Grade 7

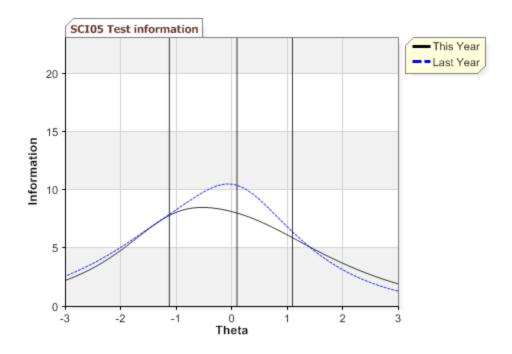




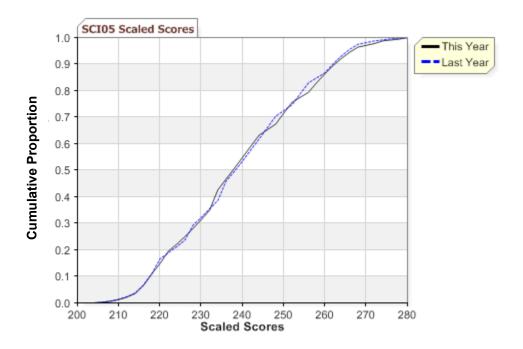
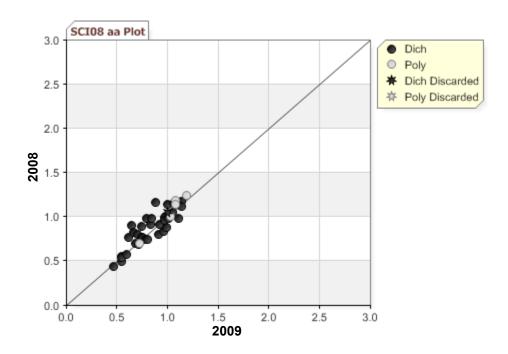
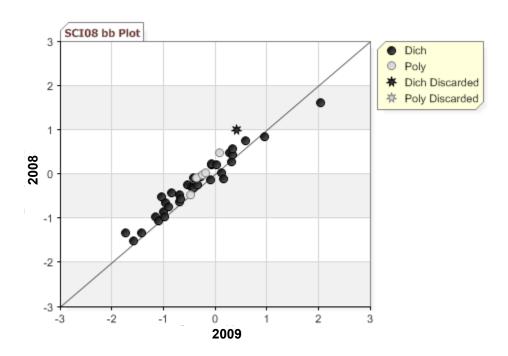
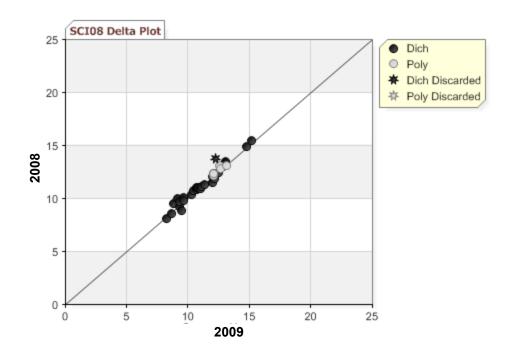
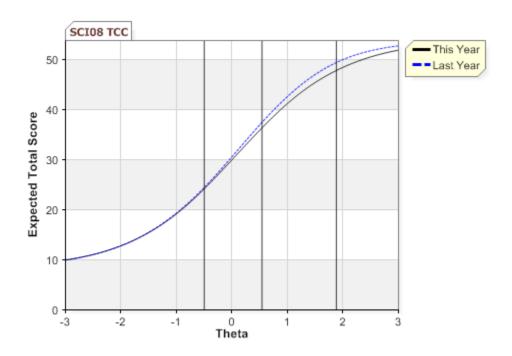


Figure 6-13. 2009 MCAS: IRT Statistics—Mathematics Grade 8

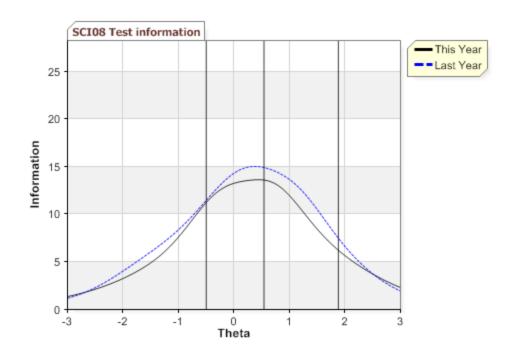






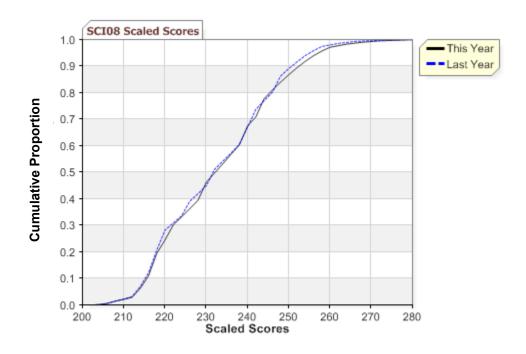
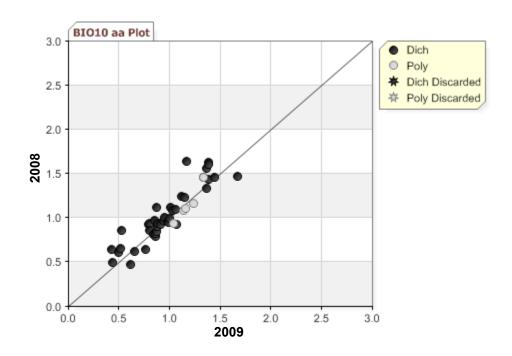
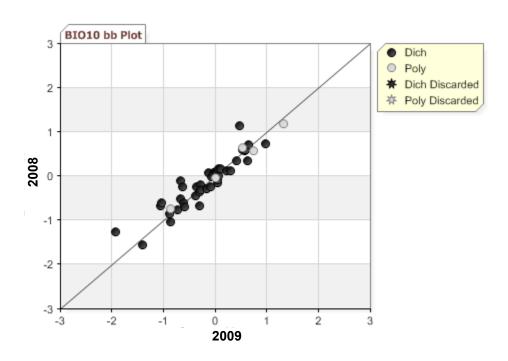
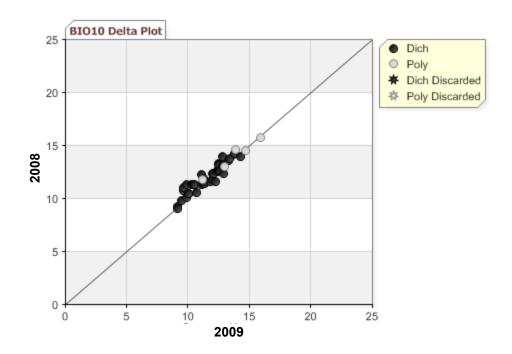
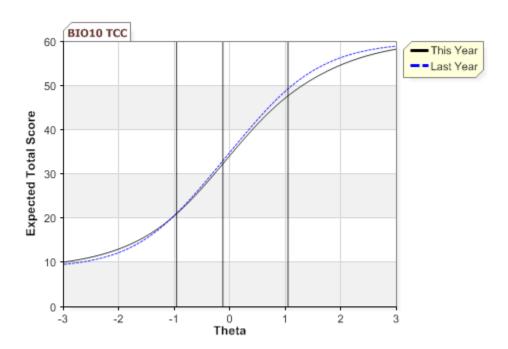

Figure 6-14. 2009 MCAS: IRT Statistics—Mathematics Grade 10

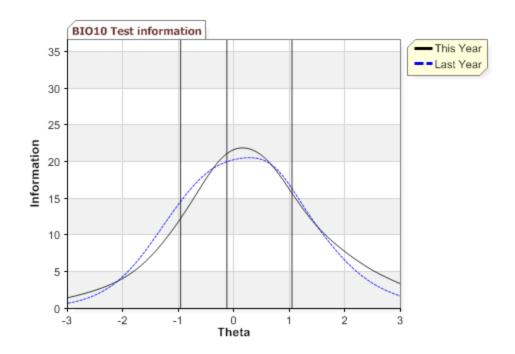






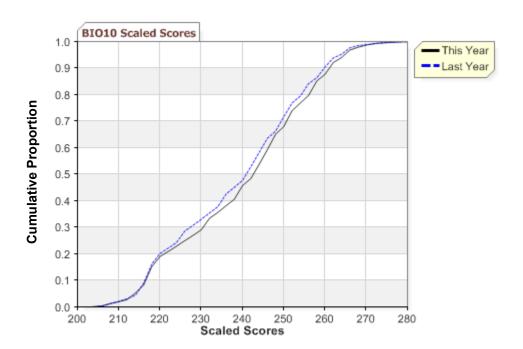
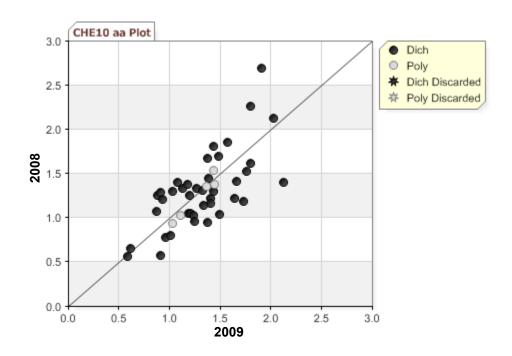
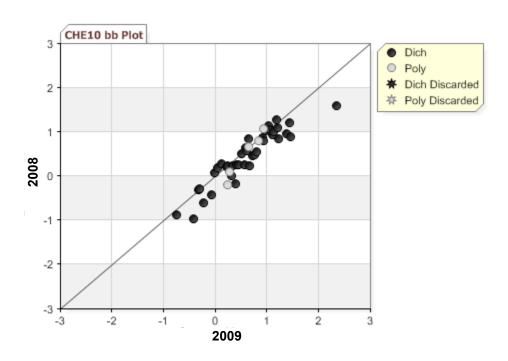
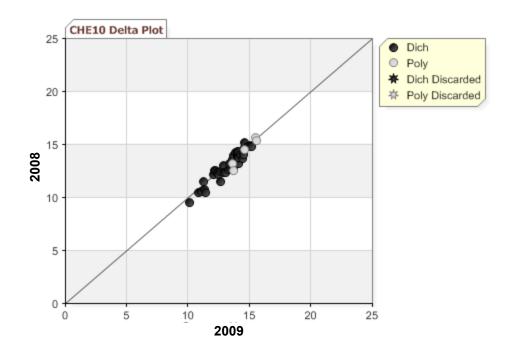
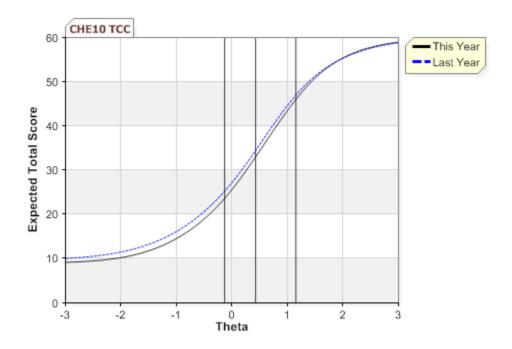

Figure 6-15. 2009 MCAS: IRT Statistics—Science and Technology/Engineering Grade 5

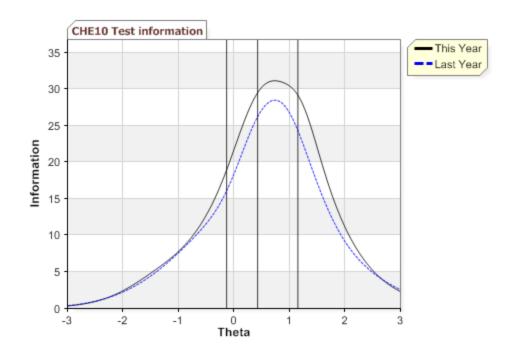






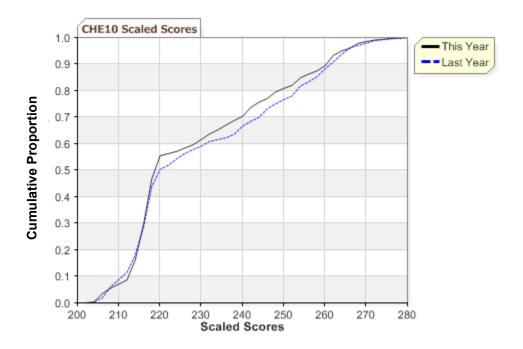
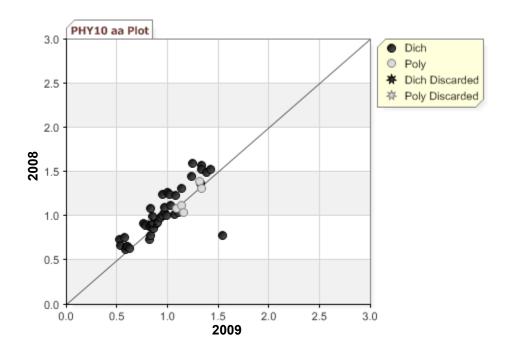
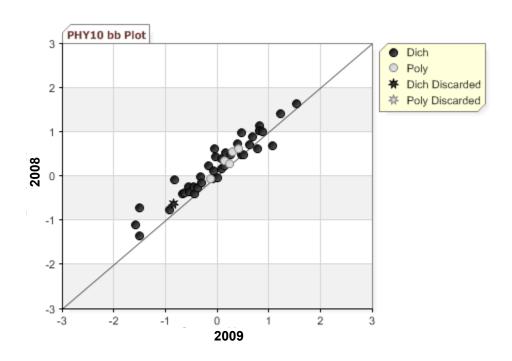
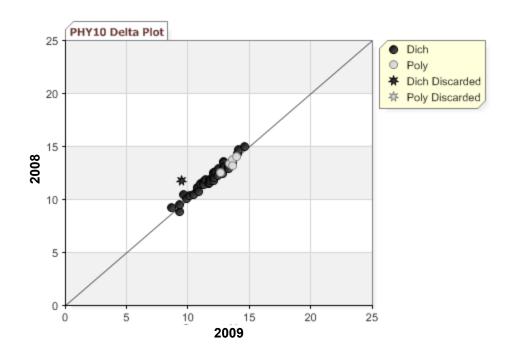
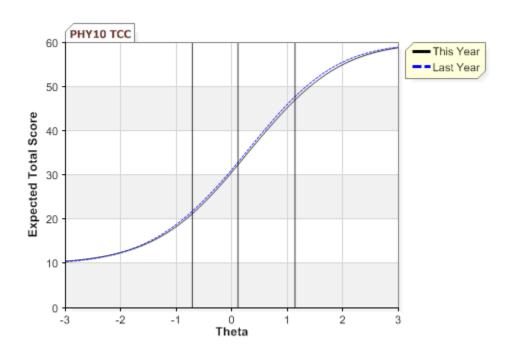

Figure 6-16. 2009 MCAS: IRT Statistics—Science and Technology/Engineering Grade 8

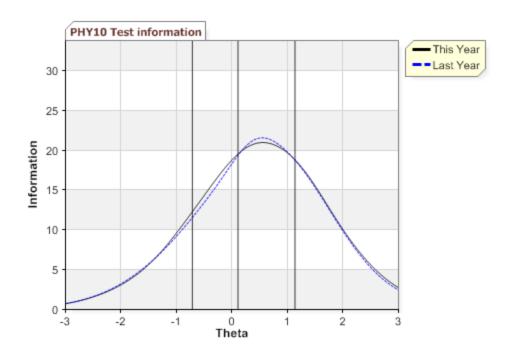







Figure 6-17. 2009 MCAS: IRT Statistics—High School Biology (Grades 9-11)


Figure 6-18. 2009 MCAS: IRT Statistics—High School Chemistry (Grades 9–11)


Figure 6-19. 2009 MCAS: IRT Statistics—High School Introductory Physics (Grades 9–11)

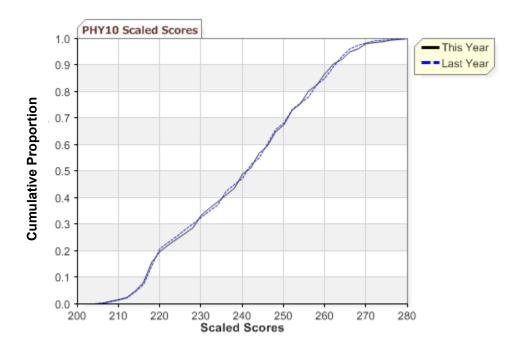
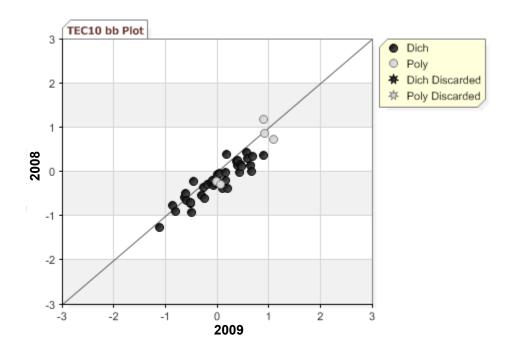
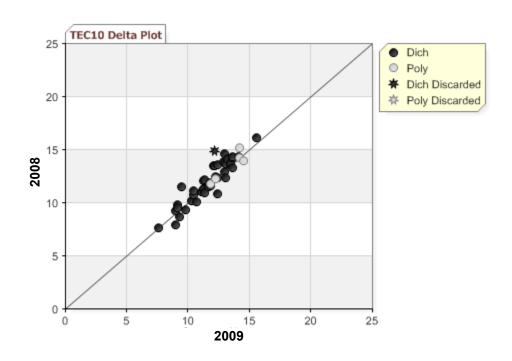
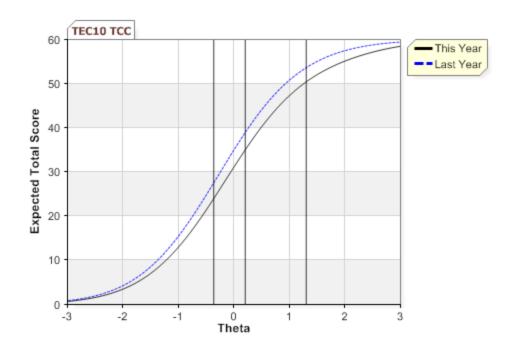
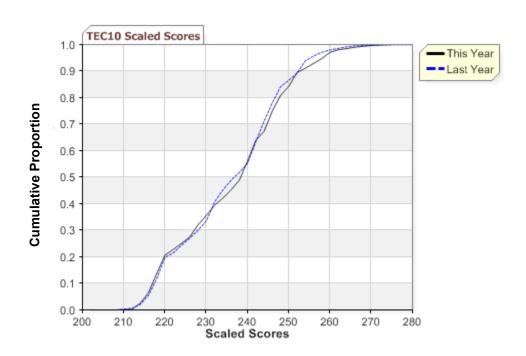






Figure 6-20. 2009 MCAS: IRT Statistics—High School Technology/Engineering (Grades 9–11)

6.3 Test Reliability

The 2007 MCAS Technical Report contains information about the rationale behind test reliability and some methods of measuring it, including a description of the split-half method.

6.3.1 Reliability and Standard Errors of Measurement

Table 6-49 presents descriptive statistics, Cronbach's (1951) alpha (α) coefficient, and raw score standard errors of measurement for each 2009 MCAS test at each grade. Alpha is computed using the following formula:

$$\alpha_{strat} = 1 - \frac{\sum_{j=1}^{k} \sigma_{x_j}^2 (1 - \alpha_j)}{\sigma_x^2}$$

where

i indexes the item,

n is the total number of items,

 $\sigma^2(Y_i)$ represents individual item variance, and

 σ_r^2 represents the total test variance.

Table 6-34. 2009 MCAS: Test Reliabilities, Descriptive Statistics, and Standard Errors of Measurement

SD = Standard Deviation; Rel = Reliability; SEM = Standard Error of Measurement Number Raw Grade Min Max Mean Content Area Score SD SEM of Rel Score Score Score Level **Points** Students 3 8.249 2.492 69,408 48 0 48 34.24 0.909 4 69,185 72 3 71 48.78 10.063 0.895 3.253 5 70,384 37.40 7.836 0.896 2.533 **English Language Arts** 52 0 52 (Composition not 6 52 2.698 69,818 0 52 38.30 8.053 888.0 included) 7 70,473 72 4 72 51.55 9.881 0.892 3.251 8 2 72,100 52 52 38.15 8.848 0.905 2.722 10 69,855 72 1 72 54.08 10.199 0.887 3.436 3 0 29.88 2.475 40 40 7.593 0.894 69,600 4 69,409 0.892 3.425 54 1 54 38.10 10.399 5 70,497 54 1 54 37.45 11.709 0.912 3.464 Mathematics 6 11.329 69,828 54 1 37.90 0.913 3.336 54 7 70,686 54 1 54 36.99 12.216 0.919 3.478 8 72,042 54 0 54 34.57 12.476 0.917 3.591 10 69,635 60 0 60 37.36 13.751 0.925 3.764 Science and 5 4 70,539 54 54 34.48 9.028 0.854 3.451 Technology/ 8 71.982 3 31.92 3.555 Engineering 54 54 9.969 0.873 Biology 9-11 50,477 60 2 60 35.73 11.448 0.916 3.315 9–11 Chemistry 1,638 60 32.18 13.457 0.919 3.83 4 60 Introductory Physics 9–11 3 0.91 3.672 17,722 60 60 34.13 12.218 Technology/Engineering 9–11 1,971 60 8 57 35.74 9.547 0.859 3.582

6.3.2 Stratified Coefficient Alpha (α)

According to Feldt and Brennan (1989), a prescribed distribution of items over categories (such as different item types) indicates the presumption that at least a small, but important, degree of unique variance is associated with the categories. In contrast, Cronbach's (1951) coefficient α is built on the assumption that there are no such local or clustered dependencies. A stratified version of coefficient α corrects for this problem.

Stratified α is defined as follows:

$$\alpha_{strat} = 1 - \frac{\sum_{j=1}^{k} \sigma_{x_j}^2 (1 - \alpha_j)}{\sigma_r^2}$$

where

j indexes the subtests or categories,

 $\sigma_{x_i}^2$ represents the variance of the *k* individual subtests or categories,

 $lpha_i$ is the unstratified Cronbach's lpha coefficient for each subtest and

 σ_{x}^{2} represents the total test variance.

Stratified α was calculated for each 2009 MCAS grade and content area combination based on item type (multiple-choice versus constructed-response). Results are provided in Table 6-50. Note that N_{mc} refers to the number of multiple-choice items on a given test, while N_{or} denotes the number of open-response items (with number of possible points on OR items in parentheses).

Table 6-35. 2009 MCAS: Test Coefficients Cronbach's $\,lpha\,$ and Stratified $\,lpha\,$

Content Area	Grade	Cronbach's	Cronbach's	Λ./	Cronbach's	Λ/	Stratified
Content Area	Level	α	α α N _{mc} α α <td>N_{or}</td> <td>α</td>	N_{or}	α		
	3	0.91		40	0.60	2 (8)	0.91
	4	0.90	0.88	36	0.85	6 (36)	0.92
English	5	0.90	0.89	36	0.75	4 (16)	0.91
Language Arts	6	0.89	0.87	36	0.82	4 (16)	0.91
Language Arts	7	0.89	0.87	36	0.86	6 (36)	0.92
	8	0.91	0.90	36	0.85	4 (16)	0.93
	10	0.89	0.86	36	0.85	6 (36)	0.91
	3	0.89	0.86	25	0.74	10 (15)	0.90
	4	0.89	0.85	29	0.78	10 (25)	0.90
	5	0.91	0.89	29	0.81	10 (25)	0.92
Mathematics	6	0.91	0.88	29	0.84	10 (25)	0.92
	7	0.92	0.89	29	0.84	10 (25)	0.93
	8	0.92	0.88	29	0.84	10 (25)	0.92
	10	0.93	0.89	32	0.86	10 (28)	0.93
Science and	5	0.85	0.83	34	0.69	5 (20)	0.87
Technology/Engineering	8	0.87	0.85	34	0.73	5 (20)	0.89
Biology	9–11	0.92	0.89	40	0.81	5 (20)	0.92
Chemistry	9–11	0.92	0.90	40	0.84	5 (20)	0.93
Introductory Physics	9–11	0.91	0.88	40	0.83	5 (20)	0.92
Technology/Engineering	9–11	0.86	0.82	40	0.75	5 (20)	0.87

6.3.3 Reliability of Performance Level Categorization

Details about the determination of statistical accuracy and consistency of classifications are provided in the 2007 Technical Report, including information regarding the Livingston and Lewis (1995) methods.

Summaries of the accuracy and consistency analyses for the 2009 MCAS administration are provided in Tables 6-36 through 6-55.

The first section of each table shows the overall accuracy and consistency indices, as well as kappa (κ) . The overall index is the sum of the diagonal elements of the appropriate contingency table.

The second section shows accuracy and consistency values conditional on performance level. For instance, the conditional accuracy value is 0.808 for the *Needs Improvement* category for grade 4 ELA. This indicates that, of the students whose true scores placed them in the *Needs Improvement* category, 81 percent would be expected to be in the same category if classified according to their actual scores. The corresponding consistency value of 0.755 indicates that 76 percent of the grade 4 students in the *Needs Improvement* category would be expected to score in that category again if a second, parallel test form were administered.

The third section provides data at each cutpoint. These values indicate the accuracy and consistency of the pass or fail decisions, either above or below the associated cutpoint. In addition, false positive and false negative accuracy rates are given. These values are estimates of the proportions of students who were categorized above the cut when their true scores would place them below the cut, and vice versa.

Table 6-36. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 3

211911011 24119449071100 0144000							
Overall Indices	Accu	ıracy	Consistency		Карра (к)		
Overall findices	0.7	763	0.687	0.687		0.531	
Indices Conditional on Level	Performance Level		Accura	су	(Consistency	
	Warning (W))	0.830			0.751	
	Needs Impro	ovement (NI)	0.818			0.760	
	Proficient (P)		0.734		0.692		
	Above Proficient (AP)		0.662		0.484		
			Accuracy				
		Accuracy	False	Fals	е	Consistency	
Indices at		Accuracy	Positives	Negati	ves		
Cutpoints	W:NI	0.973	0.013	0.01	4	0.962	
	NI:P	0.916	0.047	0.03	8	0.883	
	P:AP	0.875	0.096	0.03	0	0.842	

Table 6-37. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 4

Overall Indices	Accu	ıracy	Consistency			Карра (к)	
Overall findices	0.7	' 95	0.715	0.715		0.583	
Indices Conditional	Performa	nce Level	Accurac	<i>y</i>		Consistency	
	Warning (W))	0.797			0.686	
on Level	Needs Impro	ovement (NI)	0.808			0.755	
OII LEVEI	Proficient (P)		0.758		0.678		
	Advanced (A)		0.854		0.715		
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.961	0.017	0.0	22	0.945	
	NI:P	0.899	0.058	0.0	43	0.860	
	P:A	0.935	0.046	0.0	20	0.909	

Table 6-38. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 5

English Earlydage Arts Orace o							
Overall Indices	Accuracy		Consistency		Карра (к)		
Overall indices	3.0	300	0.724			0.590	
Indices Conditional on Level	Performa	nce Level	Accurac	:y	(Consistency	
	Warning (W)	0.770			0.629	
	Needs Impro	ovement (NI)	0.820			0.771	
	Proficient (P)		0.756		0.684		
	Advanced (A	A)	0.866		0.737		
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.979	0.008	0.0	13	0.970	
	NI:P	0.901	0.056	0.0	43	0.863	
	P:A	0.920	0.056	0.0	24	0.890	

Table 6-39. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 6

			augo 7 into Chau				
Overall Indices	Accu	ıracy	Consistency		Карра (к)		
Overall fillulces	0.7	' 89	0.708	0.708		0.572	
Indices Conditional on Level	Performance Level		Accurac	y	(Consistency	
	Warning (W))	0.776			0.650	
	Needs Impro	ovement (NI)	0.775			0.708	
	Proficient (P)		0.764		0.700		
	Advanced (A	A)	0.872	0.872		0.738	
			Accuracy			Consistency	
Indices at		Accuracy	False Positives	Fal Nega		Consistency	
Cutpoints	W:NI	0.971	0.012	0.0	17	0.959	
	NI:P	0.904	0.054	0.0	42	0.866	
	P:A	0.914	0.062	0.0	24	0.881	

Table 6-40. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 7

Overall Indices	Accı	ıracy	Consistency			Карра (к)
Overall findices	0.0	312	0.739			0.586
Indices Conditional on Level	Performa	nce Level	Accurac	:y	(Consistency
	Warning (W))	0.762			0.608
	Needs Impro	ovement (NI)	0.783			0.711
	Proficient (P)		0.820		0.773	
	Advanced (A)		0.853			0.710
			Accuracy			
		Accuracy	False	Fal	se	Consistency
Indices at		Accuracy	Positives	Nega	tives	
Cutpoints	W:NI	0.980	0.008	0.0	13	0.971
	NI:P	0.908	0.049	0.0	43	0.872
	P:A	0.925	0.054	0.0	22	0.896

Table 6-41. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 8

English Earlydage Arts Orace o							
Overall Indices	Accuracy		Consistency		Карра (к)		
Overall indices	0.0	341	0.779			0.624	
Indices Conditional on Level	Performa	nce Level	Accurac	;y		Consistency	
	Warning (W)	0.769	-		0.629	
	Needs Impro	ovement (NI)	0.768			0.686	
	Proficient (P)		0.856		0.829		
	Advanced (A	A)	0.878		0.744		
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.984	0.006	0.0	10	0.977	
	NI:P	0.934	0.034	0.0	32	0.908	
	P:A	0.922	0.057	0.0	21	0.894	

Table 6-42. 2009 MCAS: Accuracy and Consistency English Language Arts Grade 10

		.99	ago / ii to Oi aac				
Overall Indices	Accu	ıracy	Consistency		Карра (к)		
Overall findices	0.0	333	0.767	0.767		0.636	
Indices Conditional on Level	Performance Level		Accurac	;y	(Consistency	
	Failing (F)		0.762			0.601	
	Needs Impro	ovement (NI)	0.800			0.725	
	Proficient (P)		0.813		0.765		
	Advanced (A	A)	0.892	0.892		0.804	
			Accuracy				
Indices at		Accuracy	False Positives	Fal Nega		Consistency	
Cutpoints	F:NI	0.990	0.004	0.0	06	0.986	
	NI:P	0.933	0.034	0.0	33	0.906	
	P:A	0.909	0.059	0.0	32	0.875	

Table 6-43. 2009 MCAS: Accuracy and Consistency Mathematics Grade 3

Overall Indices	Accı	uracy	Consistency			Карра (к)
Overall findices	0.7	737	0.648			0.510
	Performance Level		Accurac	:y	(Consistency
Indices Conditional	Warning (W))	0.807			0.729
on Level	Needs Impro	ovement (NI)	0.708			0.624
OII LEVEI	Proficient (P)		0.695		0.624	
	Above Proficient (AP)		0.831			0.672
			Accuracy			
		Accuracy	False	Fal	se	Consistency
Indices at		Accuracy	Positives	Nega	tives	
Cutpoints	W:NI	0.952	0.024	0.0	24	0.933
	NI:P	0.903	0.058	0.0	40	0.866
	P:AP	0.883	0.087	0.0	31	0.844

Table 6-44. 2009 MCAS: Accuracy and Consistency Mathematics Grade 4

Overall Indices	Асси	ıracy	Consistency		Карра (к)	
Overall fridices	0.7	'50	0.667			0.518
Indices Conditional on Level	Performa	nce Level	Accurac	:y		Consistency
	Warning (W))	0.791			0.696
	Needs Impro	ovement (NI)	0.801			0.752
	Proficient (P)		0.659		0.577	
	Advanced (A)		0.800			0.625
			Accuracy			
		Accuracy	False	Fal	se	Consistency
Indices at		Accuracy	Positives	Nega	tives	
Cutpoints	W:NI	0.962	0.018	0.0	20	0.946
	NI:P	0.894	0.065	0.0	41	0.855
	P:A	0.894	0.079	0.0	27	0.859

Table 6-45. 2009 MCAS: Accuracy and Consistency Mathematics Grade 5

Overall Indices	Accu	ıracy	Consistency		Карра (к)	
Overall findices	0.7	762	0.678		0.563	
	Performa	nce Level	Accurac	:y		Consistency
Indiana Canditianal	Warning (W))	0.833			0.772
Indices Conditional on Level	Needs Impro	ovement (NI)	0.745			0.668
OII Level	Proficient (P)		0.671		0.582	
	Advanced (A)		0.863		0.743	
			Accuracy			
Indices at		Accuracy	False Positives	Fal Nega		Consistency
Cutpoints	W:NI	0.950	0.026	0.0	24	0.931
	NI:P	0.912	0.053	0.0	35	0.878
	P:A	0.899	0.070	0.0	31	0.864

Table 6-46. 2009 MCAS: Accuracy and Consistency Mathematics Grade 6

	Accı	ıracv	Consister	ncv		Карра (к)	
Overall Indices		0.770		0.688		0.574	
	Performa	nce Level	Accurac	:y	(Consistency	
Indiana Canditional	Warning (W)	0.820			0.753	
Indices Conditional on Level	Needs Impro	ovement (NI)	0.734			0.653	
On Level	Proficient (P)		0.709		0.629		
	Advanced (A)		0.877			0.761	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.951	0.025	0.0	24	0.931	
	NI:P	0.915	0.051	0.0	35	0.882	
	P:A	0.905	0.067	0.0	28	0.872	

Table 6-47. 2009 MCAS: Accuracy and Consistency Mathematics Grade 7

Overall Indices	Accu	ıracy	Consister	псу		Карра (к)	
Overall indices	0.7	'67	0.686			0.571	
	Performa	nce Level	Accurac	:y		Consistency	
Indices Conditional	Warning (W))	0.847			0.797	
on Level	Needs Impro	ovement (NI)	0.752			0.677	
On Level	Proficient (P)		0.717		0.645		
	Advanced (A)		0.818			0.660	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.945	0.029	0.0	26	0.923	
	NI:P	0.916	0.051	0.0	32	0.885	
	P:A	0.906	0.069	0.0	26	0.875	

Table 6-48. 2009 MCAS: Accuracy and Consistency Mathematics Grade 8

Overall Indices Acc		ıracy	Consister	Consistency		Карра (к)
Overall findices	0.7	778	0.698		0.596	
	Performa	nce Level	Accurac	y		Consistency
Indices Conditional	Warning (W))	0.845			0.797
on Level	Needs Impro	ovement (NI)	0.736			0.650
On Level	Proficient (P)		0.702		0.612	
	Advanced (A)		0.877		0.767	
			Accuracy	_		
Indices at		Accuracy	False Positives	Fal Nega		Consistency
Cutpoints	W:NI	0.938	0.034	0.0	28	0.914
	NI:P	0.920	0.048	0.0	31	0.890
	P:A	0.920	0.055	0.0	25	0.890

Table 6-49. 2009 MCAS: Accuracy and Consistency Mathematics Grade 10

Overall Indices	Accı	ıracy	Consister	псу		Карра (к)	
Overall findices	0.0	324	0.758			0.628	
	Performa	nce Level	Accurac	y		Consistency	
Indices Conditional	Failing (F)		0.711			0.587	
on Level	Needs Impro	ovement (NI)	0.703			0.610	
On Level	Proficient (P)		0.736	0.736		0.649	
	Advanced (A)		0.937			0.893	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	F:NI	0.963	0.017	0.0	20	0.949	
	NI:P	0.936	0.035	0.0	29	0.910	
	P:A	0.925	0.046	0.0	30	0.895	

Table 6-50. 2009 MCAS: Accuracy and Consistency Science and Technology/Engineering Grade 5

ocience and recimology/Engineering orace o							
Overall Indices Accu		ıracy	Consistency			Карра (к)	
Overall indices	0.7	' 36	0.643			0.490	
	Performa	nce Level	Accurac	:y	(Consistency	
Indiana Canditianal	Warning (W)	0.753	-		0.624	
Indices Conditional on Level	Needs Impro	ovement (NI)	0.757			0.695	
On Level	Proficient (P)		0.653			0.557	
	Advanced (A	A)	0.848			0.685	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	W:NI	0.948	0.022	0.0	30	0.927	
	NI:P	0.876	0.075	0.0	48	0.830	
	P:A	0.911	0.066	0.0	23	0.877	

Table 6-51. 2009 MCAS: Accuracy and Consistency Science and Technology/Engineering Grade 8

Colonics and recimiology/Engineering Crade C							
Overall Indices	Accu	ıracy	Consister	псу		Карра (к)	
Overall fillulces	0.7	774	0.689			0.536	
	Performa	nce Level	Accurac	;y	(Consistency	
Indiana Conditional	Warning (W))	0.797			0.716	
Indices Conditional on Level	Needs Impro	ovement (NI)	0.755			0.687	
On Level	Proficient (P)		0.788		0.712		
	Advanced (A	A)	0.734			0.448	
			Accuracy				
Indices at		Accuracy	False Positives	Fal Nega		Consistency	
Cutpoints	W:NI	0.926	0.037	0.0	37	0.897	
	NI:P	0.891	0.068	0.0	41	0.849	
	P:A	0.957	0.037	0.0	06	0.941	

Table 6-52. 2009 MCAS: Accuracy and Consistency High School Biology (Grades 9–11)

Overall Indices	Accu	iracy	Consister	псу		Карра (к)	
Overall findices	3.0	804	0.729		0.615		
	Performa	nce Level	Accurac	:y		Consistency	
Indices Conditional	Failing (F)		0.824			0.757	
on Level	Needs Impro	ovement (NI)	0.750			0.664	
On Level	Proficient (P)		0.818	0.818		0.760	
	Advanced (A)		0.841			0.723	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	F:NI	0.950	0.026	0.0	24	0.930	
	NI:P	0.926	0.042	0.0	32	0.897	
	P:A	0.928	0.047	0.0	25	0.901	

Table 6-53. 2009 MCAS: Accuracy and Consistency High School Chemistry (Grades 9–11)

riigii School Chemistry (Grades 3–11)							
Overall Indices	Acci		Consistency			Карра (к)	
Overall indices	0.0	324	0.755			0.648	
	Performa	nce Level	Accurac	:y		Consistency	
Indices Conditional	Failing (F)		0.887			0.868	
on Level	Needs Impro	ovement (NI)	0.721			0.604	
On Level	Proficient (P)		0.743			0.644	
	Advanced (A)		0.898		0.806		
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	F:NI	0.917	0.053	0.0	30	0.883	
	NI:P	0.944	0.035	0.0	21	0.922	
	P:A	0.962	0.026	0.0	13	0.947	

Table 6-54. 2009 MCAS: Accuracy and Consistency High School Introductory Physics (Grades 9–11)

ingi concernaciation (Craace Ciri							
Overall Indices	Accu	ıracy	Consistency			Карра (к)	
Overall fillulces	0.7	' 99	0.721			0.608	
	Performa	nce Level	Accurac	y	(Consistency	
Indiana Canditianal	Failing (F)		0.796			0.712	
Indices Conditional on Level	Needs Impro	ovement (NI)	0.746			0.666	
On Level	Proficient (P)		0.807		0.742		
	Advanced (A)		0.882	0.882		0.772	
			Accuracy				
Indices at		Accuracy	False Positives	Fal Nega		Consistency	
Cutpoints	F:NI	0.944	0.027	0.0	28	0.922	
	NI:P	0.915	0.049	0.0	36	0.881	
	P:A	0.940	0.041	0.0	19	0.917	

Table 6-55. 2009 MCAS: Accuracy and Consistency High School Technology/Engineering (Grades 9–11)

Overall Indices	Accı	ıracy	Consister	псу		Карра (к)	
Overall findices	0.7	782	0.698			0.542	
	Performa	nce Level	Accurac	;y	(Consistency	
Indices Conditional	Failing (F)		0.770			0.659	
on Level	Needs Impro	ovement (NI)	0.752			0.684	
On Level	Proficient (P)		0.808			0.739	
	Advanced (A)		0.824			0.608	
			Accuracy				
		Accuracy	False	Fal	se	Consistency	
Indices at		Accuracy	Positives	Nega	tives		
Cutpoints	F:NI	0.942	0.026	0.0	32	0.919	
	NI:P	0.886	0.068	0.0	46	0.842	
	P:A	0.955	0.036	0.0	10	0.936	

6.4 Validity

Evidence is presented in detail throughout this document to support inferences of student achievement of the learning standards of the Massachusetts curriculum frameworks, as measured by MCAS, including test development, test alignment, test administration, scoring, equating, item analyses, reliability, scaled scores, performance levels, and reporting. The purpose of this section of the report is to discuss how MCAS ensures the validity of its tests and their results.

6.4.1 Validity Evidence for Standard MCAS Tests

MCAS tests are rigorously examined in reference to the guidelines found in *Standards for Educational and Psychological Testing* (1999), which provide criteria for the evaluation of tests, testing practices, and effects of test use for a broad set of assessments, including alternate assessments.

Standards for Educational and Psychological Testing describes sources of evidence to consider when constructing a validity argument. Examples of standards prescribed by the manual, as well as evidence of how MCAS tests satisfy these standards, are presented below.

Standard 1.2 (p. 17): "The test developer should set forth clearly how test scores are intended to be interpreted and used."

For the 2009 MCAS administration, the *Guide to Interpreting the Spring 2009 MCAS Reports for Schools and Districts* (www.doe.mass.edu/mcas/results.html) satisfies standard 1.2. The document outlines general guidelines for the interpretation and use of MCAS reports, gives instructions on how to read and interpret specific reports, and provides information on how to make appropriate comparisons and inferences from statistics. Additionally, the 2009 MCAS Parent/Guardian Report (www.doe.mass.edu/mcas/results.html) provides guidance to parents and guardians regarding interpretation of MCAS results.

Standard 1.13 (p. 20): "When validity evidence includes statistical analyses of test results, either alone or together with data on other variables, the conditions under which the data were collected should be described in enough detail that users can judge the relevance of the statistical findings to local conditions. Attention should be drawn to any features of a validation data collection that are likely to differ from

typical operational testing conditions and that could plausibly influence test performance."

This standard concerns the degree to which the data collected for validity evidence may be generalized to operational conditions. Most of the statistical evidence of validity for the 2009 MCAS tests (see section 6.4.1.2 on internal structure) was derived from the tests themselves; thus, this evidence is immediately applicable to MCAS. Whenever validity evidence was accrued from a subset of the Massachusetts test-taking population rather than the entire population (e.g., a study of the concordance between MCAS and other instruments, described below), any potential differences between sample and population were thoroughly documented.

Standard 1.14 (p. 20): "The patterns of association between and among scores on the instrument under study and other variables should be consistent with theoretical expectations."

Massachusetts has accumulated a substantial amount of evidence of the criterion-related validity of MCAS tests. This evidence shows that MCAS test results are correlated strongly with relevant measures of academic achievement. Specific examples may be found in the 2007 MCAS Technical Report.

Standards for Educational and Psychological Testing (1999) also advocates that evidence in the following three general areas be considered:

- Test content
- Internal structure
- Consequences of testing

Although each source of evidence may speak to a different aspect of validity, they are not distinct types of validity. Instead, each contributes to a body of evidence about the comprehensive validity of score interpretations.

6.4.1.1 Test Content

Test content validity is the degree to which MCAS items align to the Massachusetts curriculum framework learning standards for each content area and grade level. Evidence of test content validity is described in greater detail in chapter 2 of this document, "Test Development and Design," and in the 2007 MCAS Technical Report.

Assessment Development Committees

The primary gauge of the developmental appropriateness of MCAS test items is the review of all items by Massachusetts teachers who serve on MCAS Assessment Development Committees (ADCs). All ADC members have experience teaching students in the content area and grade level for which items are being developed (e.g., grade 5 ELA reading comprehension items are reviewed by Massachusetts teachers who are currently teaching or have recently taught grade 5 reading), so that all items are reviewed by individuals who are best equipped to evaluate the developmental appropriateness of test material.

ADC members serve one-year terms on their respective committees and may re-apply for membership at the end of each term. There is no restriction as to the number of terms a member may serve. The goal of the process is to continually infuse the committee with new members while retaining veteran members. Committee members are required to have content expertise, teaching

experience in the grade and subject matter they are reviewing, and familiarity with the curriculum frameworks. Applications for membership on ADCs request the following:

- Superintendent's signed recommendation
- Current resume
- One- to two-page statement of interest describing why the applicant wishes to serve on a committee and what the applicant can contribute to the committee.

The ESE reviews the applications and determines who will be invited to participate on an ADC.

Approximately 80 percent of the ADC members are female. The composition of the committees is intended to reflect the variety of school districts in Massachusetts. The ESE considers the following when appointing members to the ADCs:

- Geographic distribution—Committee members should represent the length and width of the state from the westernmost districts to the Cape and the Islands.
- Urban/Suburban/Rural distribution—While most districts in the state may fall into the suburban category, it is imperative that urban and rural districts be represented on the committees.
- Economic distribution—The ESE takes care to ensure that districts across the socioeconomic continuum receive representation on the ADCs.

A list of the ADC members and their sending districts can be found in Appendix F.

The following steps are taken to review the content of every operational MCAS item:

- Item is provided by Measured Progress (MP) to ESE for review 10 days prior to ADC meeting.
- Item is reviewed by ESE for alignment with Massachusetts curriculum framework and for content accuracy.
- Item is returned to MP with edits.
- Item is reviewed by ADC panelists for alignment, content accuracy, and bias.
- Post-ADC debriefing: item is reviewed by MP and ESE developers.
- Item is presented to Bias and Sensitivity Review Committee for evaluation.
- Item and comments from Bias and Sensitivity Review Committee are reviewed by ESE; decision is made to field test.
- Item is field tested.
- When items are selected to be on the field-test portion of the MCAS, they are submitted to expert reviewers for their feedback. The task of the expert reviewer is to consider the accuracy of the content of the item and to recommend that items be kept as is, edited, or deleted. Each item is reviewed by two independent expert reviewers. All expert reviewers for MCAS are either PhDs or EdDs and are all affiliated with institutions of higher education either in teaching or research positions. Each expert reviewer has been approved by the ESE. Expert review comments are included with the items when they are sent to ADC meetings for statistics reviews.
- Item is reviewed by ADC panelists for statistics (performance), alignment, content, and expert review comments. Panelists make recommendations.
- The Bias and Sensitivity Review Committee review the items and their associated statistics.
- ESE makes final decision to designate item as common, and then item becomes part of that year's test.

Additionally, for the English language arts tests, each reading passage is subjected to a minimum of two readability tests, and the grade level appropriateness of vocabulary within test items is checked against a widely used grade level guide for vocabulary, *EDL Core Vocabularies in Reading*, *Mathematics, Science, and Social Studies* (Taylor, 1989).

Items and reading passages may be rejected and removed from further consideration at any point in the above process.

Bias and Sensitivity Review Committee

The Bias and Sensitivity Review Committee is comprised of educators and members of the educational community from across the state who assist the ESE in reviewing items for possible bias and sensitivity concerns. They consider all items and passages in terms of gender, race, ethnicity, geography, religion, sexual orientation, culture, and social appropriateness. Members are expected to have some understanding of these issues as well as an understanding of both the MCAS and MEPA testing programs. They receive further training from the ESE. All items are reviewed for bias/sensitivity concerns prior to field testing and a second time with the item statistics. Like the ADCs, The Bias and Sensitivity Review Committee members serve one-year terms and may reapply for membership upon completion of each term. The Bias and Sensitivity Review Committee member applications must include the following:

- Signed superintendent's recommendation
- Current resume
- One- to two-page statement of interest highlighting which group the applicant feels qualified to represent along with appropriate justification.

While the ESE considers geographic, economic, and urban/suburban/rural distribution in selecting members for this committee, they also consider the groups being represented by the applicants. Appendix F provides a list of all 2009 Bias and Sensitivity Review Committee members.

Bias and Sensitivity Review Committee members meet four times annually in two- to three-day sessions to review passages and items to ensure that students are not disadvantaged by test materials for reasons that are not educationally relevant.

Each item is reviewed two times, once before field testing and again after field testing. Items and passages are checked for conformity to the standards outlined in *Bias Issues in Test Development* (Caporrino & Kerr, 1999). Committee members decide whether to recommend that materials be kept as is, edited, or deleted. The decisions of the Bias and Sensitivity Review Committee are reviewed by the ESE for a final determination.

6.4.1.2 Internal Structure

Standard 1.11 of *Standards for Educational and Psychological Testing* (1999) states, "If the rationale for a test use or interpretation depends on premises about the relationships among parts of the test, evidence concerning the internal structure of the test should be provided" (p. 20).

Evidence of the internal structures of MCAS tests is provided through the detailed statistical analyses within this report. Technical characteristics of the internal structures of the assessments are presented in terms of the following:

- Classical item statistics (item difficulty and item-to-total-score correlation, section 6.1.1)
- Differential item functioning analyses (section 6.1.2)

- Item response theory parameters and procedures (section 6.2)
- A variety of reliability coefficients and standard errors of measurement (section 6.3.1)

In addition, psychometricians closely examine theoretically derived and empirically derived item characteristic curves. This allows for the evaluation of item model fit as well as a structural evaluation across all MCAS test items. Redundant analysis performed by the University of Massachusetts at Amherst also supports data structure found through item response theory (IRT) analysis. Each test is equated to the same grade and content area test from the prior year to preserve the meaning of scores over time. Detailed discussions of equating, scaling, and item analyses are provided in sections 4.3 and 6.1 of this report.

6.4.1.3 Dimensionality Analyses

Because tests are constructed with multiple content area subcategories and their associated knowledge and skills, the potential exists for a large number of dimensions being invoked beyond the common primary dimension. Generally, the subcategories are highly correlated with each other; therefore, the primary dimension they share typically explains an overwhelming majority of variance in test scores. In fact, the presence of just such a dominant primary dimension is the psychometric assumption that provides the foundation for the unidimensional IRT models used for calibrating, linking, scaling, and equating the MCAS test forms for grades 3 through 8 and high school.

The purpose of dimensionality analysis is to investigate whether violation of the assumption of test unidimensionality is statistically detectable and, if so, (a) the degree to which unidimensionality is violated, and (b) the nature of the multidimensionality. Dimensionality analyses were performed on common items for all MCAS tests administered during the spring 2009 administrations. A total of 20 tests were analyzed, and the results for these analyses are reported in Table 6-71, including a comparison with the results from 2008.

Dimensionality analyses were conducted using the nonparametric IRT-based methods DIMTEST (Stout, 1987; Stout, Froelich, & Gao, 2001) and DETECT (Zhang & Stout, 1999). Both methods use as their basic statistical building block the estimated average conditional covariances for item pairs. A conditional covariance is the covariance between two items conditioned on true score (expected value of observed score) for the rest of the test, and the average conditional covariance is obtained by averaging over all possible conditioning scores. When a test is strictly unidimensional, all estimated conditional covariances are expected to take on values within random noise of zero, indicating statistically independent item responses for examinees with equal expected scores. Nonzero conditional covariances are essentially violations of the principle of local independence, and such local *dependence* implies multidimensionality. Thus, nonrandom patterns of positive and negative conditional covariances are indicative of multidimensionality.

DIMTEST is a hypothesis testing procedure for detecting violations of local independence. The data are first randomly divided into a training sample and a crossvalidation sample. An exploratory analysis of the conditional covariances is conducted on the training sample data to find the cluster of items that displays the greatest evidence of local dependence. The crossvalidation sample is then used to test whether the conditional covariances of the selected cluster of items display local dependence, conditioning on total score on the nonclustered items. The DIMTEST statistic follows a standard normal distribution under the null hypothesis of unidimensionality.

DETECT is an effect size measure of multidimensionality. As with DIMTEST, the data are first randomly divided into a training sample and a crossvalidation sample (these samples are drawn independently of those used with DIMTEST). The training sample is used to find a set of mutually

exclusive and collectively exhaustive clusters of items that best fit a systematic pattern of positive conditional covariances for pairs of items from the same cluster and negative conditional covariances from different clusters. Next, the clusters from the training sample are used with the crossvalidation sample data to average the conditional covariances. The within-cluster conditional covariances are summed, and from this sum the between-cluster conditional covariances are subtracted. The resulting difference is divided by the total number of item pairs, and this average is multiplied by 100 to yield an index of the average violation of local independence for an item pair. DETECT values less than 0.2 indicate very weak multidimensionality (or near unidimensionality), values of 0.2 to 0.4 indicate weak to moderate multidimensionality, values of 0.4 to 1.0 indicate moderate to strong multidimensionality, and values greater than 1.0 indicate very strong multidimensionality.

DIMTEST and DETECT were applied to the common items of the MCAS tests administered during spring 2009 (a total of 20 tests). Each elementary and middle school grade had over 69,000 student examinees per test. For the high school tests, ELA and mathematics each had over 69,000 student examinees, biology had over 50,000, physics had over 18,000, and chemistry and technology/engineering had approximately 2,500 each. Because DIMTEST was limited to using 24,000 students, the training and crossvalidation samples for the tests that had over 24,000 students were limited to 12,000 each, randomly sampled from the total. DETECT, on the other hand, had an upper limit of 500,000 students, so every training sample and crossvalidation sample used all the available data. After randomly splitting the data into training and crossvalidation samples, DIMTEST was applied to each data set to see if the null hypothesis of unidimensionality would be rejected. DETECT was then applied to each data set for which the DIMTEST null hypothesis was rejected in order to estimate the effect size of the multidimensionality.

DIMTEST Analyses

The results of the DIMTEST analyses indicated that the null hypothesis was very strongly rejected for nearly every data set. Specifically, the hypothesis testing *p*-value was less than 0.00005 in 17 out of 20 cases. In the remaining three cases, the grade 3 ELA test rejected at a significance level of 0.0004, the high school technology/engineering test rejected at a significance level of 0.0003, and the high school chemistry test rejected at a *p*-value of 0.035. Even though all the hypothesis tests rejected at level 0.05 (the typical level used for determining statistical rejection), because multiple hypothesis tests were conducted, one could interpret the result for high school chemistry as nonrejection.

Overall, there is a strong tendency toward rejection of the hypothesis of unidimensionality for the MCAS tests. Because strict unidimensionality is an idealization that almost never holds exactly for a given data set, the large number of strong statistical rejections in the DIMTEST results were not surprising. Indeed, because of the very large sample sizes involved in most of the data sets (over 50,000 in 17 of the 20 tests), DIMTEST would be expected to be sensitive to even quite small violations of unidimensionality.

DETECT Analyses

DETECT was used to estimate the effect sizes for the violations of local independence in the cases where DIMTEST rejection of the hypothesis of unidimensionality occurred. Although no further analysis was strictly necessary for high school chemistry because it could be argued to have had nonrejection, for the sake of completeness, the chemistry DETECT results are also included. Table 6-71 displays the multidimensionality effect size estimates from DETECT for both the 2008 and 2009 MCAS administrations.

Table 6-56. 2009 MCAS: Multidimensionality Effect Sizes by Grade and Content Area

Grade	Content Area	Multidimensional	lity Effect Size
Grade	Content Area	2008	2009
3	ELA	0.11	0.11
3	Mathematics	0.12	0.14
4	ELA	0.20	0.16
4	Mathematics	0.17	0.18
	ELA	0.13	0.12
5	Mathematics	0.18	0.19
	Science and Technology/Engineering	0.16	0.13
6	ELA	0.15	0.14
U	Mathematics	0.18	0.12
7	ELA	0.14	0.16
,	Mathematics	0.20	0.17
	ELA	0.15	0.19
8	Mathematics	0.10	0.16
	Science and Technology/Engineering	0.18	0.14
	ELA (Grade 10)	0.18	0.18
	Mathematics (Grade 10)	0.11	0.17
High	Biology (Grades 9–11)	0.10	0.07
School	Chemistry (Grades 9–11)	0.16	0.10
	Introductory Physics (Grades 9–11)	0.14	0.14
	Technology/Engineering (Grades 9–11)	0.15	0.16

The DETECT values indicated very weak multidimensionality for all 2009 tests. The ELA test forms (average effect size of about 0.15) and the mathematics test forms (average of about 0.16) tended to show slightly greater multidimensionality than did the STE test forms (average of about 0.12). Also shown in Table 6-71 are the values reported in last year's dimensionality analyses. In 2008, the averages for ELA and mathematics were about 0.15, and the average for STE was about 0.14. Thus, last year's results are very similar to those from this year. It is interesting to note that chemistry, the test whose data resulted in DIMTEST nonrejection, also had one of the lowest DETECT indices.

The way in which DETECT divided the tests into clusters was also investigated to determine whether there were any discernable patterns with respect to the multiple-choice (MC) and constructed-response (CR) item types. Inspection of the DETECT clusters indicated that MC-CR separation generally occurred much more strongly with ELA than with mathematics or STE, a pattern that has been consistent across all three years of dimensionality analyses for the MCAS tests. Specifically, for ELA, every grade except grade 3 had one set of clusters dominated by MC items and another set of clusters dominated by CR items. This particular pattern within ELA has occurred in all three years of the MCAS dimensionality analyses. Of the seven mathematics tests, only grade 7 showed evidence of moderately consistent separation of MC and CR items. Of the six STE tests, the grade 8 test and the high school technology/engineering test had strong MC-CR separation, but no discernable separation occurred for the other tests. In comparison to past years, the only consistent MC-CR separation that has occurred in the mathematics and STE tests has been with high school

technology/engineering. Thus, a tendency is suggested for MC and CR items to sometimes measure statistically separable dimensions, especially in regard to the ELA tests. This has been consistent across all three years of MCAS analyses. However, it is important to emphasize that the degree of violation of unidimensional local independence has been quite similar across the three content areas over the three years of analysis. Also, the sizes of the violations of local independence have been small in all cases. The degree to which these small violations can be attributed to item type differences tends to be greater for ELA than for mathematics or STE. More investigation by content experts would be required to better understand the violations of local independence that are due to sources other than item type.

In summary, for the 2008–2009 analyses, the violations of local independence, as evidenced by the DETECT effect sizes, were very weak in all cases. Thus, these effects do not seem to warrant any changes in test design or scoring. In addition, the magnitudes of the violations of local independence have been consistently low over the years, and the patterns with respect to the MC and CR items have also been consistent, with ELA tending to display more separation than the other two content areas.

6.4.1.4 Consequences of Testing

Reporting information is provided in chapter 5 of this report. The Commonwealth has ascertained that reporting structures are consistent with the subdomain structures of its academic content standards, i.e., item interrelationships are consistent with the Massachusetts curriculum frameworks on which the tests are based. MCAS reporting categories display results for items grouped by framework subtopic or content area. Educators also have the flexibility to customize reports for local needs using a data analysis tool provided to each school system.

The consequences of MCAS testing are consistent with the purposes of the MCAS program, which have been widely documented and have remained unchanged since the introduction of the program in 1998. The Commonwealth has specified the purposes of the assessments, delineating the types of uses and decisions most appropriate to each. The purposes of MCAS examinations, common among standard tests and alternate assessments, are to

- evaluate the performance of students, schools, districts, and the state based upon the Massachusetts curriculum framework content standards and the MCAS performance standards;
- improve classroom instruction and student academic achievement by providing data that assist local educators in improving curriculum and instruction;
- relate MCAS test scores to adequate yearly progress (AYP) requirements, in concert with other evidence, to determine NCLB federal funding;
- certify students for eligibility to earn a high school diploma. The state's high school Competency Determination requirement was first applied to the class of 2003 in English language arts and mathematics; students in the classes of 2010 and beyond will also be required to meet the science and technology/engineering requirement for earning a Competency Determination in order to be eligible for a Massachusetts high school diploma.

6.4.2 Validity Evidence for the MCAS-Alt

According to the 2009 Educator's Manual for MCAS-Alt, the purposes of the MCAS-Alt are to

- include difficult to assess students in assessment and accountability, as required by law;
- determine whether students with significant disabilities are receiving a program of instruction based on the state's academic learning standards;
- measure the extent to which students have learned the academic curriculum;
- use assessment results to provide challenging academic instruction for students with disabilities;
- provide an alternative pathway for some students to earn a Competency Determination in order to be eligible to receive a diploma.

Both content and procedural validity of the MCAS-Alt are discussed in the next sections.

6.4.2.1 Content Validity

MCAS-Alt portfolio content is based on the Massachusetts curriculum framework learning standards that describe the concepts, skills, and knowledge that students are expected to learn by the end of each grade from prekindergarten through grade 12.

The Resource Guide to the Massachusetts Curriculum Frameworks for Students With Disabilities provides instructional and assessment strategies for teaching students with disabilities the same learning standards as general education students. The Resource Guide is intended to promote "access to the general curriculum," as required by law, and to assist educators to plan instruction and assessment for students with significant cognitive disabilities. It was developed by panels of education experts in each content area, including ESE staff, testing contractor staff, higher education faculty, MCAS ADC members, and regular and special educators. Each section was written, reviewed, and validated by panels of content area experts to ensure that each modified standard (entry point) embodied the essence of the grade level learning standard on which it was based.

Specific guidelines help teachers assemble MCAS-Alt portfolios based on academic outcomes in the content area and strand being assessed, while maintaining the flexibility necessary to meet the needs of diverse learners. The requirements for constructing student portfolios necessitate that challenging skills based on grade level content standards are taught in order to produce the needed evidence. It is therefore virtually guaranteed that students are taught academic skills at an appropriate level of complexity. Rigorous scoring procedures hold scorers to high standards of accuracy and consistency using monitoring methods that include frequent double scoring, monitoring, and recalibration to verify and validate portfolio scores. These procedures, along with ESE review of each year's MCAS-Alt results, confirm that the MCAS-Alt is being successfully used for the purposes for which it was intended.

6.4.2.2 Procedural Validity

Procedural validity is shown by thorough documentation of the process used to develop the assessment instrument and of the processes of scoring, standard setting, and describing and reporting performance. Although procedural evidence does not guarantee validity of assessment results, the lack of procedural evidence can negatively affect credibility of results.

Procedural validity is determined based on a review of the following questions:

- Who participated in the development process?
- How were decisions made during development?
- Was the plan implemented as discussed?
- After implementation, was the plan reviewed at intervals, and revised as needed?
- Was the development process documented?

Who participated in the development process?

The MCAS-Alt was developed by a group of diverse stakeholders, including representatives from special education, regular education, and higher education, and administrators from urban and nonurban districts, collaboratives, and approved special education private schools. Also included in the development process were psychometricians, education and assessment policy makers, inclusion specialists, attorneys, special education advocates, and the Northeast Regional Resource Center.

External members of the original MCAS-Alt Development Committee were Dr. Ed Roeber, Dr. Sue Bechard, Dr. Kenneth Warlick, Dr. Charles DePascale, and Dr. Jacqui Kearns, many of whom served in key roles in the development and implementation of large scale alternate assessments in Colorado, Illinois, Iowa, Kentucky, Maine, Maryland, Massachusetts, Montana, New Hampshire, New Jersey, New Mexico, New York, Puerto Rico, Rhode Island, South Carolina, Tennessee, Washington, Washington, D.C., and West Virginia.

As the MCAS-Alt is revised and updated to reflect new mandates and greater efficiencies, ESE staff continue to consult recognized experts in the field of alternate assessment for their views and ideas.

How were decisions made during development?

Care was taken to include all stakeholder viewpoints during development and revision of the assessment. While making decisions, developers kept the following guidelines in mind:

- The MCAS-Alt should parallel the standard MCAS tests regarding the content areas and standards required for assessment.
- The MCAS-Alt should provide results that can be used to make valid and reliable decisions.
- The MCAS-Alt should be sufficiently flexible to include a wide range of students.
- The MCAS-Alt should not overly burden the state's teachers.

All discussions and recommendations made by the technical and stakeholder advisory committees are documented and maintained in the public minutes of the statewide MCAS-Alt Advisory Committee, and Technical Advisory Committee meetings.

Was the plan implemented as discussed?

The 2009 MCAS-Alt was administered as stipulated in published materials on implementation, scoring, and reporting. Intensive training was provided for teachers, including

- 32 ESE sponsored training sessions each year,
- online publications and training modules,
- monthly newsletters,
- two Teacher's Network meetings each year (see below for more information),
- a three-week scoring institute emphasizing the professional development of participants.

Materials were delivered to schools within the specified time frame. Portfolios were scored according to the scoring rubric from the 2009 Educator's Manual for MCAS-Alt, disseminated in the fall of 2008, and the 2009 Guidelines for Scoring Student Portfolios

(<u>www.doe.mass.edu/mcas/alt/results.html</u>). Scores were analyzed using the 2009 decision rules. Reports were generated in accordance with those rules and shipped to schools. Score appeals were received and reviewed using the procedures outlined in the policy that was posted and sent to schools with the materials in the spring and fall.

After implementation, was the plan reviewed at intervals, and revised as needed?

Both the MCAS-Alt Advisory Committee and the MCAS-Alt Teacher's Network met quarterly to review the status of the MCAS-Alt and to recommend changes, as needed, to the ESE. The Advisory Committee has discussed every change made to the MCAS-Alt since its inception. The Teacher's Network includes about 100 educators directly responsible for administering the MCAS-Alt. This group evaluates the effectiveness of the current policies and advises on future directions.

Was the development process documented?

Minutes of every meeting of the MCAS-Alt Advisory Committee have been recorded and kept on file at the ESE, along with all research reports and other documentation. Additional documentation can be found on the MCAS-Alt website (www.doe.mass.edu/mcas/alt), including the following:

- Definition and purpose of the assessment (see the FAQs in "About the MCAS-Alt")
- Description and rationale of the assessment method (see the FAQs in "About the MCAS-Alt")
- Definition of assessment standards (see the resource guide in "Resources and Training")
- Selection and training of scorers (see "Scoring & Reporting Results")
- Description of scoring procedures and rubrics (see "Scoring & Reporting Results")
- Description of procedures used to determine student level results as well as aggregated results (see "Scoring & Reporting Results")
- State performance and participation results from 2001 through 2008 (see "Scoring & Reporting Results")

REFERENCES

PUBLICATIONS BY THE MASSACHUSETTS DEPARTMENT OF ELEMENTARY AND SECONDARY EDUCATION (FORMERLY KNOWN AS "MASSACHUSETTS DEPARTMENT OF EDUCATION")

Available Online

2009 Guidelines for Scoring Student Portfolios. www.doe.mass.edu/mcas/alt/results.html

- Guide to Interpreting the Spring 2009 MCAS Reports for Schools and Districts. www.doe.mass.edu/mcas/results.html
- Massachusetts Curriculum Frameworks (English Language Arts, History and Social Science, Mathematics, Science and Technology/Engineering). www.doe.mass.edu/frameworks/current.html
- MCAS Technical Reports, 1998–2008. www.doe.mass.edu/mcas/tech/?section=techreports
- Resource Guide to the Massachusetts Curriculum Frameworks for Students with Disabilities.

 <u>www.doe.mass.edu/mcas/alt/resources.html</u> [A print copy of this publication may be ordered online at www.mcasservicecenter.com/mcasalt/welcome.asp?ProgramID=6&ServiceID=21.]
- Spring 2009 MCAS Tests: Summary of State Results. www.doe.mass.edu/mcas/results.html
- Spring 2009 Principal's Administration Manual. www.doe.mass.edu/mcas/testadmin/

Available in Print

Massachusetts Department of Education. 2008. 2009 Educator's Manual for MCAS-Alt. Malden, MA: Massachusetts Department of Elementary and Secondary Education.

OTHER PUBLICATIONS REFERENCED IN THIS REPORT

- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. 1999. *Standards for educational and psychological testing*. Washington, DC: American Educational Research Association.
- Caporrino, R., & C. Kerr. 1999. *Bias issues in test development*. Amherst, MA: National Evaluation Systems, Inc.
- Cohen, J. 1960. A coefficient of agreement for nominal scales. *Educational and Psychological Measurement* 20:37–46.
- Cronbach, L. J. 1951. Coefficient alpha and the internal structure of tests. *Psychometrika* 16:297–334.
- Dorans, N. J., & P. W. Holland. 1993. DIF detection and description. In P. W. Holland & H. Wainer (eds.). *Differential item functioning*, pp. 35–66. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

- Dorans, N. J., & E. Kulick. 1986. Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the Scholastic Aptitude Test. *Journal of Educational Measurement* 23:355–368.
- Holland, P. W., & H. Wainer, eds. 1993. *Differential item functioning*. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
- Joint Committee on Testing Practices. 1988. *Code of fair testing practices in education*. Washington, DC: National Council on Measurement in Education.
- Livingston, S. A., & C. Lewis. 1995. Estimating the consistency and accuracy of classifications based on test scores. *Journal of Educational Measurement* 32:179–197.
- Stout, W. F. 1987. A nonparametric approach for assessing latent trait dimensionality. *Psychometrika* 52:589–617.
- Stout, W. F., A. G. Froelich, & F. Gao. 2001. Using resampling methods to produce an improved DIMTEST procedure. In A. Boomsma, M. A. J. van Duign, & T. A. B. Snijders (eds.). *Essays on item response theory*, pp. 357–375. New York: Springer-Verlag.
- Taylor, S. E. 1989. *EDL core vocabularies in reading, mathematics, science, and social studies*. Austin, TX: Steck-Vaughn Company.
- Zhang, J., & W. F. Stout. 1999. The theoretical DETECT index of dimensionality and its application to approximate simple structure. *Psychometrika* 64:213-249.

ADDITIONAL RESOURCES

- Allen, M. J., & W. M. Yen. 1979. *Introduction to measurement theory*. Belmont, CA: Waveland Press, Inc.
- Brown, F. G. 1983. *Principles of educational and psychological testing*. 3rd ed. Fort Worth, TX: Holt, Rinehart, and Winston.
- Feldt, L. S., & R. L. Brennan. 1989. Reliability. In R. L. Linn (ed.), *Educational measurement*. 3rd ed., pp. 105–146. New York: Macmillan Publishing Company.
- Fleiss, J. L., & J. Cohen. 1973. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. *Educational and Psychological Measurement* 33:613–619.
- Gong, B. 1999. Relationships between student performance on the MCAS (Massachusetts Comprehensive Assessment System) and other tests—collaborating district A, grades 4 and 10. Prepared for the Massachusetts Department of Education. Dover, NH: The National Center for the Improvement of Educational Assessment, Inc.
- Hambleton, R. K., & H. Swaminathan. 1985. *Item response theory: Principles and applications*. Boston, MA: Kluwer Academic Publishers.
- Hambleton, R. K., H. Swaminathan, & H. J. Rogers. 1991. *Fundamentals of item response theory*. Newbury Park, CA: Sage Publications, Inc.

- Hambleton, R. K., & W. J. van der Linden, eds. 1997. *Handbook of modern item response theory*. New York: Springer-Verlag.
- Kim, S. 2006. A comparative study of IRT fixed parameter calibration methods. *Journal of Educational Measurement* 43 (4):355–81.
- Li, Y. H., W. D. Griffith, & H. P. Tam. 1997. Equating multiple tests via an IRT linking design: Utilizing a single set of anchor items with fixed common item parameters during the calibration process. Paper presented at the meeting of the Psychometric Society, Knoxville, TN.
- Lord, F. M. 1980. Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
- Lord, F. M., & M. R. Novick. 1968. *Statistical theories of mental test scores*. Reading, MA: Addison-Wesley Publishing Company, Inc.
- Muraki, E., & R. D. Bock. 2003. PARSCALE 4.1. Lincolnwood, IL: Scientific Software International, Inc.
- Ostini, R., & M. L. Nering. 2006. *Polytomous item response theory models*. Thousand Oaks, CA: Sage Publications, Inc.
- Petersen, N. S., M. J. Kolen., & H. D. Hoover. 1989. Scaling, norming, and equating. In R.L. Linn (ed.), *Educational measurement*. 3rd ed., pp. 221–262. New York: Macmillan Publishing Company.
- Thacker, A. A., & R. G. Hoffman. 1999. Relationships between MCAS and SAT-9 for one district in Massachusetts (HumRRO Report FR-WATSD-99-05). Alexandria, VA: Human Resources Research Organization.

APPENDICES